Skip to main content
Log in

Effective dual role catalyst of mixed oxide heterostructure for photocatalyst and electrocatalytic sensing of isoniazid

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hetero-composite metal oxide nanostructures have received great attention owing to their synergistic microstructural features with distinct functionalities. Herein, CuO–Ce2O3 mixed metal oxide (MMO) was synthesized using facile and effective hydrothermal approach. The catalyst material was characterized with essential analytical techniques to confirm the phase, crystallinity and surface morphology. As an active catalyst, the dual performances of effective photodegradation of methylene blue (MB) and electro-oxidative sensing of Isoniazid (INH) was observed. The photodegradation of MB was investigated in the presence of O2 ·−, OH· radicals and photogenerated holes (h+); among these three, h+ involved efficiently for MB photodegradation under visible light. From the Tauc plot, the bandgap energy for CuO and Ce2O3 were found to ~1.8 and ~2.7 eV respectively. Cyclic voltammetry was used to investigate the electro-oxidation of Isoniazid on CuO–Ce2O3 modified/glassy carbon electrode (GCE). It reveals that MMO can facilitate the electrochemical oxidation of Isoniazid with a great decrease in over potential from 0.8 to 0.4 V at pH 7 phosphate buffer solution. Furthermore, the MMO exhibits excellent catalytic performance towards electro-oxidation of INH over the linear range of 6–50 µM with low detection limit of 0.33 µM at 50 mV scan rate. Thus it can be concluded that MMO/GCE could be a potential bi-functional catalyst for the MB photodegradation and efficient sensing of INH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Yuan, H.B. Wu, Y. Xie, W.X. David Lou, Angew. Chem. Int. Ed. 53, 1488–1504 (2014)

    Article  Google Scholar 

  2. J.L. White, M.F. Baruch, J.E. Pander, Y. Hu, I.C. Fortmeyer, J.E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T.W. haw, E. Abelev, A.B. Bocarsly, Chem. Rev. 115, 12888–12935 (2015)

    Article  Google Scholar 

  3. A.B. Bogeat, M.A. Franco, C.F. Gonzalez, A.M. Garcıab, V.G. Serrano, Phys. Chem. Chem. Phys. 16, 25161–25175 (2016)

    Article  Google Scholar 

  4. R. Manigandan, K. Giribabu, S. Munusamy, S. Praveen Kumar, S. Muthamizh, T. Dhanasekaran, A. Padmanaban, R. Suresh, A. Stephen, V. Narayanan, CrystEngComm 17, 2886–2895 (2015)

    Article  Google Scholar 

  5. M. Horie, K. Fujita, H. Kato, S. Endoh, K. Nishio, L.K. Komaba, A. Nakamura, A. Miyauchi, S. Kinugasa, Y. Hagihara, E. Niki, Y. Yoshida, H. Iwahashi, Metallomics 4, 350–360 (2012)

    Article  Google Scholar 

  6. M.B. Gawande, P.S. Branco, K. Parghi, J.J. Shrikhande, R.K. Pandey, C.A.A. Ghumman, N. Bundaleski, O.M.N.D. Teodorod and R.V. Jayaram, Catal. Sci. Technol. 1, 1653–1664 (2011)

    Article  Google Scholar 

  7. G.K. Pradhan, K.M. Parida, Int. J. Eng. Sci. Technol. 2, 53–65 (2010)

    Google Scholar 

  8. N. Padmanathan, S. Selladurai, Ionics 20, 409–420 (2014)

    Article  Google Scholar 

  9. Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, ACS Appl. Mater. Interfaces 2, 2915–2923 (2010)

    Article  Google Scholar 

  10. A. Kargar, Y. Jing, S.J. Kim, C.T. Riley, X. Pan, D. Wang, ACS Nano 7, 11112–11120 (2013)

    Article  Google Scholar 

  11. J. Graciani, A.M. Marquez, J.J. Plata, Y. Ortega, N.C. Hernandez, A. Meyer, C.M.Z. Wilson, J.F. Sanz, J. Chem. Theory Comput. 7, 56–65 (2011)

    Article  Google Scholar 

  12. T. Pandiyarajan, R. Saravanan, B. Karthikeyan, F. Gracia, H.D. Mansilla, M.A. Gracia-Pinilla, R.V. Mangalaraja, J. Mater. Sci. 2, 5817 (2016)

    Google Scholar 

  13. S. Pal, S. Maiti, U.N. Maiti, K.K. Chattopadhyay, CrystEngComm 17, 1464–1476 (2015)

    Article  Google Scholar 

  14. J.S. Lee, O.S. Kwon, J. Jang, J. Mater. Chem. 22, 14565–14572 (2012)

    Article  Google Scholar 

  15. S. Dhanavel, E.A.K. Nivethaa, K. Dhanapal, V.K. Gupta, V. Narayanan, A. Stephen, RSC Adv. 6, 28871–28886 (2016)

    Article  Google Scholar 

  16. C. Zhang, L. Gu, Y. Lin, Y. Wang, D. Fu, Z. Gu, J. Photochem. Photobiol. A 207 66–72 (2009)

    Article  Google Scholar 

  17. P.K. Rastogi, V. Ganesan, U.P. Azad, Electrochim. Acta 188, 818–824 (2016)

    Article  Google Scholar 

  18. R. Pandey, GK. Khuller, Tube 85, 227–234 (2005)

    Article  Google Scholar 

  19. P. Nagaraja, K.C.S. Murthy, H.S. Yathirajan, Talanta 43, 1075–1080 (1996)

    Article  Google Scholar 

  20. E. Calleri, E.D. Lorenzi, S. Furlanetto, J. Pharma. Biomed. Anal. 29, 1089–1096 (2002)

    Article  Google Scholar 

  21. M.R. Majidi, A. Jouyban, K.A. Zeynali, J. Electroanal. Chem. 589, 32–37 (2006)

    Article  Google Scholar 

  22. W.J. Roth, W. Makowski, B. Marszalek, P. Michorczyk, W. Skuza, B. Gil, J. Mater. Chem. A 2, 15722–15725 (2014)

    Article  Google Scholar 

  23. C. Tamuly, I. Saikia, M. Hazarika, M.R. Das, RSC Adv. 4, 53229–53236 (2014)

    Article  Google Scholar 

  24. G.S. Gund, D.P. Dubal, D.S. Dhawale, S.S. Shinde, C.D. Lokhande, RSC Adv. 3, 24099–24107 (2013)

    Article  Google Scholar 

  25. X. Liu, K. Zhou, L. Wang, B. Wang, Y. Li, J. Am. Chem. Soc. 131, 3140–3141 (2009)

    Article  Google Scholar 

  26. S. Wolf, C. Feldmann, J. Mater. Chem. 20, 7694–7699 (2010)

    Article  Google Scholar 

  27. Y. Geng, P. Zhang, N. Li, Z. Sun, J. Alloy. Compd. 651, 744–748 (2015)

    Article  Google Scholar 

  28. S. Singha, M. Sahoo, K.M. Parida, Dalton Trans. 40, 11838–11844 (2011)

    Article  Google Scholar 

  29. Y. Li, W. Zhang, J. Niu, Y. Chen, ACS Nano 6, 5164–5173 (2012)

    Article  Google Scholar 

  30. J. Jin, H. Mei, H. Wu, S. Wang, Q. Xia, Y. Ding, J. Alloy. Compd. 689, 174–181 (2016)

    Article  Google Scholar 

  31. M. Romeo, K. Bak, J. El Fallah, F. Le Normand, L. Hilaire, Surf. Interface Anal. 20, 508–512 (1993)

    Article  Google Scholar 

  32. P. Bera, C. Anandan, RSC Adv. 4, 62935–62939 (2014)

    Article  Google Scholar 

  33. P. Dutta, S. Pal, M.S. Seehra, Y. Shi, E.M. Eyring, R.D. Ernst, Chem. Mater. 18, 5144–5146 (2006)

    Article  Google Scholar 

  34. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Rep. 4, 4596–4604 (2014)

    Article  Google Scholar 

  35. R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, A. Stephen, Mater. Sci. Eng. 33, 4725–4731 (2013)

    Article  Google Scholar 

  36. C. Slostowski, S. Marre, O. Babot, T. Toupance, C. Aymonier, Langmuir 28, 16656–16663 (2012)

    Article  Google Scholar 

  37. J. Mazloom, F.E. Ghodsi, H. Zamani, H. Golmojdeh, J. Mater. Sci. 7, 5784 (2016)

    Google Scholar 

  38. S. Hu, F. Zhou, L. Wang, J. Zhang, Catal. Commun. 12, 794–797 (2011)

    Article  Google Scholar 

  39. C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy Environ. Sci. 7, 2831–2867 (2014)

    Article  Google Scholar 

  40. H. Huang, Y. He, X. Du, P.K. Chu, Y. Zhang, ACS Sustain. Chem. Eng. 3, 3262–3273 (2015)

    Article  Google Scholar 

  41. H. Zhang, Z. Ji, T. Xia, H. Meng, C.L. Kam, R. Liu, S. Pokhrel, S. Lin, X. Wang, Y.P. Liao, M. Wang, L. Li, R. Rallo, R. Damoiseaux, D. Telesca, L. Madler, Y. Cohen, J.I. Zink, A.E. Nel, ACS Nano 6, 4349–4368 (2012)

    Article  Google Scholar 

  42. R. Marschall, Adv. Funct. Mater. 24, 2421–2440 (2014)

    Article  Google Scholar 

  43. M.T. Qamar, M. Aslam, I.M. Ismail, N. Salah, A. Hameed, ACS Appl. Mater. Interfaces 7, 8757–8769 (2015)

    Article  Google Scholar 

  44. A. Chithambararaj, N.S. Sanjini, A.C. Bose, S. Velmathi, Catal. Sci. Technol. 3, 1405–1414 (2013)

    Article  Google Scholar 

  45. Y. Shang, X. Chen, W. Liu, P. Tan, H. Chen, L. Wu, C. Ma, X. Xiong, J. Pan, Appl. Catal. B 204, 78–88 (2017)

    Article  Google Scholar 

  46. R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Praveen Kumar, S. Muthamizh, A. Stephen, V. Narayanan, J. Alloy. Compd. 598, 151–160 (2014)

    Article  Google Scholar 

  47. O. Kerkez, I. Boz, J. Phys. Chem. Solids 75, 611–618 (2014)

    Article  Google Scholar 

  48. S. Gu, W. Li, F. Wang, H. Li, H. Zhou, Catal. Sci. Technol. 6, 1870–1881 (2016)

    Article  Google Scholar 

  49. J. Tang, Y. Liu, H. Li, Z. Tan, D. Li, Chem. Commun. 49, 5498–5500 (2013)

    Article  Google Scholar 

  50. U.P. Azad, V. Ganesan, J. Solid State Electrochem. 16, 2907–2911 (2012)

    Article  Google Scholar 

  51. S. Praveen Kumar, K. Giribabu, R. Manigandan, S. Munusamy, S. Muthamizh, A. Padmanaban, T. Dhanasekaran, R. Suresh, V. Narayanan, Electrochim. Acta 194, 116–126 (2016)

    Article  Google Scholar 

  52. L. Fernandez, C. Borras, H. Carrero, Electrochim. Acta 52, 872–884 (2006)

    Article  Google Scholar 

  53. S. Muthamizh, R. Suresh, K. Giribabu, R. Manigandan, S. Praveen Kumar, S. Munusamy, V. Narayanan, J. Alloy. Compd. 619, 601–609 (2015)

    Article  Google Scholar 

  54. E. Laviron, J. Electroanal. Chem. 101, 19–28 (1979)

    Article  Google Scholar 

  55. D. Ranjith Kumar, D. Manoj, J. Santhanalakshmi, J.J. Shim, Electrochim. Acta 176, 514–522 (2015)

    Article  Google Scholar 

  56. R.R. Kharade, S.S. Mali, S.P. Patil, K.R. Patil, M.G. Gang, P.S. Patil, J.H. Kim, P.N. Bhosale, Electrochim. Acta 102, 358–368 (2013)

    Article  Google Scholar 

  57. K. Giribabu, R. Suresh, R. Manigandan, S. Munusamy, S. Praveen Kumar, S. Muthamizh, V. Narayanan, Analyst 138, 5811–5818 (2013)

    Article  Google Scholar 

  58. I.F. Ramos, M.C. Acevedo, M.A. Scibioh and C.R. Cabrera, J. Electroanal. Chem. 650, 98–104 (2010)

    Article  Google Scholar 

  59. C.W. Kung, C.Y. Lin, Y.H. Lai, R. Vittal, K.C. Ho. Biosens. Bioelectron. 27, 125-131 (2011)

    Article  Google Scholar 

  60. S. Buratti, B. Brunetti, S Mannino. Talanta 76, 454–457 (2008)

    Article  Google Scholar 

  61. M.A. Karimi, A.H. Mehrjardi, M.M. Ardakani, Int. J. Electrochem. Sci. 5, 1634–1648 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University of Hyderabad (HCU) for providing FE-SEM and National Centre for Nano science and Nanotechnology (NCNSNT), University of Madras for XPS and HR-TEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Narayanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2595 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanasekaran, T., Padmanaban, A., Manigandan, R. et al. Effective dual role catalyst of mixed oxide heterostructure for photocatalyst and electrocatalytic sensing of isoniazid. J Mater Sci: Mater Electron 28, 12726–12740 (2017). https://doi.org/10.1007/s10854-017-7098-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7098-9

Keywords

Navigation