Skip to main content

Advertisement

Log in

Rapid breakdown anodization to obtain nanostructured TiO2 powders for photocatalytic hydrogen generation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2 is widely used for photocatalytic applications, and several methodologies are employed to obtain nanostructured TiO2 powders with a wide range of morphologies that tune its performance; however, rapid breakdown anodization methodology has been scarcely explored for this purpose, disregarding the impact of processing variables over TiO2 properties and photocatalytic performance. Here, the synthesis of TiO2 nano-powders at different voltages (10, 15, 20 and 25 V) and their performance in the UV-photocatalytic water decomposition for hydrogen generation are reported. SEM images showed that TiO2 powders consisted of uniformly distributed nanoparticles, disregarding the voltage employed for their growth; however, the crystallinity, specific surface area and semiconducting properties were considerably affected. The highest H2 generation rate in a 7-h test was observed for the powders obtained at 20 V, which showed the most negative flat-band potential and the lowest charge-transfer resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. M.A. Henderson, A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011)

    Article  Google Scholar 

  2. S.J. Park, Y.K. Paek, H. Lee, Y.J. Kim, Lithium ion insertion in titania nanotube powders synthesized by rapid breakdown anodization. Electrochem. Solid-State Lett. 13, A85–A87 (2010)

    Article  Google Scholar 

  3. R.P. Antony, T. Mathews, A. Dasgupta, S. Dash, A.K. Tyagi, B. Raj, Rapid breakdown anodization technique for the synthesis of high aspect ratio and high surface area anatase TiO2 nanotube powders. J. Solid State Chem. 184, 624–632 (2011)

    Article  Google Scholar 

  4. Y. Liao, W. Que, Z. Tang, W. Wang, W. Zhao, Effects of heat treatment scheme on the photocatalytic activity of TiO2 nanotube powders derived by a facile electrochemical process. J. Alloys Compd. 509, 1054–1059 (2011)

    Article  Google Scholar 

  5. R.P. Antony, T. Mathews, C. Ramesh, N. Murugesan, A. Dasgupta, S. Dhara, S. Dash, A.K. Tyagi, Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization. Int. J. Hydrog. Energy 37, 8268–8276 (2012)

    Article  Google Scholar 

  6. R. Hahn, M. Stark, M.S. Hilian, P. Schmuki, Photocatalytic properties of in situ doped TiO2-nanotube grown by rapid breakdown anodization. Catal. Sci. Technol. 3, 1765–1770 (2013)

    Article  Google Scholar 

  7. P. Zhong, Y. Liao, W. Que, Q. Jia, T. Lei, Enhanced electron collection in photoanode based on ultrafine TiO2 nanotubes by a rapid anodization process. J. Solid State Electrochem. 18, 2087–2097 (2014)

    Article  Google Scholar 

  8. J. Podporska-Carroll, E. Panaitescu, B. Quilty, L. Wang, L. Menon, S.C. Pillai, Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes. Appl. Catal. B 176–177, 70–75 (2015)

    Article  Google Scholar 

  9. L.K. Preethi, R.P. Antony, T. Mathews, S.C.J. Loo, L.H. Wong, S. Dash, A.K. Tyagi, Nitrogen doped anatase-rutile heterostructured nanotubes for enhanced photocatalytic hydrogen production: promising structur for sutainable fuel production. Int. J. Hydrog. Energy 41, 5865–5877 (2016)

    Article  Google Scholar 

  10. D. Ramírez-Ortega, A.M. Meléndez, P. Acevedo-Peña, I. González, R. Arroyo, Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity. Electrochim. Acta 140, 541–549 (2014)

    Article  Google Scholar 

  11. D. Ramírez-Ortega, P. Acevedo-Peña, F. Tzompantzi, R. Arroyo, F. González, I. González, Energetic states in SnO2–TiO2 structures and their impacto n interfacial charge transfer process. J. Mater. Sci. 52, 260–275 (2017)

    Article  Google Scholar 

  12. D. Guerrero-Araque, D. Ramírez-Ortega, P. Acevedo-Peña, F. Tzompantzi, H. Calderón-Benavides, R. Gómez, Interfacial charge-transfer process across ZrO2–TiO2 heterojunction and its impacto n photocatalytic activity. J. Photochem. Photobiol. A 335, 276–286 (2017)

    Article  Google Scholar 

  13. P. Acevedo-Peña, L. LArtundo-Rojas, I. González, Effect of pH on the barrier layer of TiO2 nanoporous films potentiostatically grown in aqueous media containing fluoride ions. J. Electrochem. Soc. 160, C291–C297 (2013)

    Article  Google Scholar 

  14. C.Y. Xu, P.X. Zhang, L. Yan, Blue shift of Raman peak from coated TiO2 nanoparticles. J. Raman Spectrosc. 32, 862–865 (2001)

    Article  Google Scholar 

  15. H. Hou, F. Gao, M. Shang, L. Wang, J. Zheng, Q. Liu, Z. Yang, J. Xu, W. Yang, Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous nanofibers. J. Mater. Sci. 28, 3796–3805 (2017)

    Google Scholar 

  16. Y. Min, G. He, Q. Xu, Y. Chen, Dual-functional MoS2 sheet-modified CdS branch-like heterostructures with enhanced photostability and photocatalytic activity. J. Mater. Chem. A 2, 2578–2584 (2014)

    Article  Google Scholar 

  17. S. Guo, Y. Zhu, Y. Yan, Y. Min, J. Fan, Q. Xu, Holey structured graphitic carbon nitride thin sheets with edge oxygen doping via photo-Fenton reaction with enhanced photocatalytic activity. Appl. Catal. B 185, 315–321 (2016)

    Article  Google Scholar 

  18. F.Q. Zhou, J.C. Fan, Q.J. Xu, Y.L. Min, BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation. Appl. Catal. B 201, 77–83 (2017)

    Article  Google Scholar 

  19. P. Zhang, T. Song, T. Wang, H. Zeng, In-situ synthesis of Cu nanoparticles hydridized with carbon quantum dots as a broad spectrum photocatalyst for improvement of photocatalytic H2 evolution. Appl. Catal. B 206, 328–335 (2017)

    Article  Google Scholar 

  20. P. Acevedo-Peña, J.E. Carrera-Crespo, F. González, I. González, Effect of heat treatment on the crystal phase composition, semiconducting properties and photoelectrocatalytic color removal efficiency of TiO2 nanotubes arrays. Electrochim. Acta 140, 564–571 (2014)

    Article  Google Scholar 

  21. L. Cheng, H. Ding, C. Chen, N. Wang, Ag2S/Bi2S3 co-sensitized TiO2 nanorod arrays prepared on conductive glass as a photoanodes for solar cells. J. Mater. Sci. 27, 3234–3239 (2016)

    Google Scholar 

Download references

Acknowledgements

Diana Guerrero-Araque gratefully acknowledges the support of a CONACYT scholarship CVU No. 506795. The authors are grateful to project CONACYT-México (270810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Próspero Acevedo-Peña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Araque, D., Ramírez-Ortega, D., Gómez, R. et al. Rapid breakdown anodization to obtain nanostructured TiO2 powders for photocatalytic hydrogen generation. J Mater Sci: Mater Electron 28, 9859–9866 (2017). https://doi.org/10.1007/s10854-017-6740-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6740-x

Keywords

Navigation