Skip to main content
Log in

Influence of Y and Co co-doping in the multiferroic behaviors of BiFeO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single phase of pure BiFeO\(_{3}\) (BFO) and \({{{{\text{Bi}}_{0.99}{\text{Y}}_{0.01}{\text{Fe}}}_{1-{x}}\text{Co}_{{x}}\text{O}_{3}}}\) (\(0.01\le x\le 0.03\)) (\(\text {BYFC}\)) multiferroic ceramics were prepared by using a modified solid state reaction method. The scanning electron microscope (SEM) images revealed that the grain size and morphology were dependent on the nature of dopant. X-ray diffraction peaks were found to belong to the pure \(\text {BFO}\) structure with R3c space group of symmetry. It was found that the dielectric constant (\(\varepsilon '\)) values increased \(\sim\)13.5 times with the addition of Co ions; being \(\sim\)170 and \(\sim\)2300, for pure BFO and \(x=0.01\), respectively, at the lower frequencies (100 Hz). The dielectric behavior was described by the modified Cole–Cole model. Ferromagnetic (FM) ordering with saturation magnetization, \(M_{s}\), and coercivity \(H_{c}\) values of \(\sim\)0.75 emu/g and \(\sim\) \(\text {400 Oe}\), was found in the BYFC ceramics at \(\text {x = 0.03}\) at room temperature. A decrease in the band gap was observed due to the amount of doping in the BYFC ceramics. The origin of the enhanced dielectric and magnetic properties was discussed on the basis of the size effect and the nature of the dopants like \(\text {Y}^{3+}\), \({{{\text{Co}}^{2+}}}\) and \({{\text{Co}}^{3+}}\) ions in the lattice structure of the doped ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Dong, J.M. Liu, Recent progress of multiferroic perovskite manganites. Mod. Phys. Lett. B 26(09), 1230004 (2012)

    Article  Google Scholar 

  2. N. Panwara, I. Coondooa, A. Tomar, Nanoscale piezoresponse and magnetic studies of multiferroic Co and Pr co-substituted BFO thin films. Mater. Res. Bull. 47(12), 4240 (2012)

    Article  Google Scholar 

  3. P. Banerjee, A. Franco Jr, Enhanced dielectric and magnetic properties in multiferroic Bi0.99Y0.01Fe0.99Ni0.01O3 ceramic. Mater. Lett. 184, 17–20 (2016)

    Article  Google Scholar 

  4. P. Banerjee, A. Franco Jr., Rare earth and transition metal doped BiFeO\(_{3}\) ceramics: structural, magnetic and dielectric characterization. J. Mater. Sci. 27(6), 6053–6059 (2016)

    Google Scholar 

  5. C. Chen, J. Cheng, S. Yu, L. Che, Z. Meng, Hydrothermal synthesis of perovskite bismuth ferrite crystallites. J. Cryst. Growth 291(1), 135–139 (2006)

    Article  Google Scholar 

  6. R.Y. Umetsu, Y. Mitsui, I. Yuito, T. Takeuchi, H. Kawarada, Substitution effects of Cr or Fe on the curie temperature for mn-based layered compounds MnAlGe and MnGaGe with Cu\(_{2}\)Sb -type structure. IEEE Trans. Magn. 50(11), 1–4 (2014)

    Article  Google Scholar 

  7. Z. Yan, K.F. Wang, J.F. Qu, Y. Wang, Processing and properties of Yb-doped BiFeO\(_{3}\) ceramics. Appl. Phys. Lett. 91, 082906 (2007)

    Article  Google Scholar 

  8. T.D. Berman, T.M. Pollock, J.W. Jones, Microstructure and texture through thixomolding and thermomechanical processing and the role of Mg\(_{17}\)Al\(_{12}\) particles. Metall. Mater. Trans. A 47(6), 3125–3136 (2016)

    Article  Google Scholar 

  9. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    Article  Google Scholar 

  10. Y.-Q. Mao, Z.-J. Zhou, T. Ling, X.-W. Du, P-type CoO nanowire arrays and their application in quantum dot-sensitized solar cells. RSC Adv. 3, 1217–1221 (2013)

    Article  Google Scholar 

  11. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int. J. Electrochem. Sci 3, 597–608 (2008)

    Google Scholar 

  12. W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Noraon, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12(9), 821–826 (2013)

    Article  Google Scholar 

  13. Kennieth S. Cole, Robert H. Cole, Dispersion and absorption in dielectrics. J. Chem. Phys. 9, 341 (1941)

    Article  Google Scholar 

  14. Y. Gonzalez Abreu, A. Pelaiz Barranco, E .B. Araujo, A. Franco Jr, Dielectric relaxation and relaxor behavior in bilayered perovskites. Appl. Phy. Lett. 94, 262903 (2009)

    Article  Google Scholar 

  15. C. Kittel, Introduction to solid state physics (Wiley, New York, 1995)

    Google Scholar 

  16. S.S. Naira, M. Mathews, P. Joy, S.D. Kulkarni, M.R. Anantharaman, Effect of cobalt doping on the magnetic properties of superparamagnetic \(\gamma\)-Fe\(_{2}\)O\(_{3}\)-polystyrene nanocomposites. J. Magn. Magn. Mater. 283(2–3), 344–352 (2004)

    Article  Google Scholar 

  17. S.K. Pradhan, Effect of barium substitution on ferroelectric and magnetic properties of bismuth ferrite. J. Magn. Magn. Mater. 322, 3614 (2010)

    Article  Google Scholar 

  18. S.K. Pradhan, B.K. Roul, Electrical behavior of high resistivity Ce-doped BiFeO\(_{3}\) multiferroic. Phys. B 407(13), 2527–2532 (2012)

    Article  Google Scholar 

  19. M. Naeem, S. Qaseem, I.H. Gul, A. Maqsood, Study of active surface defects in Ti doped ZnO nanoparticles. J. Appl. Phys. 107(12), 124303 (2010)

    Article  Google Scholar 

  20. H. Liu, Y. Guo, B. Guo, D. Zhang, Synthesis and visible-light photocatalysis capability of BiFeO\(_{3}\)–(Na\(_{0.5}\)Bi\(_{0.5}\))TiO\(_{3}\) nanopowders by a sol–gel method. Solid State Sci. 19, 69–72 (2013)

    Article  Google Scholar 

  21. H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. J. Appl. Phys. 86(11), 6451–6461 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the support received from the Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG) project Grant DCR-14/2013 and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) postdoctoral fellowship Grant 300810/2015-6. One of us (A. Franco Jr) is a CNPq fellow under Grant No. 308183/2012-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, P., Franco Jr, A. Influence of Y and Co co-doping in the multiferroic behaviors of BiFeO3 ceramics. J Mater Sci: Mater Electron 28, 8562–8568 (2017). https://doi.org/10.1007/s10854-017-6579-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6579-1

Keywords

Navigation