Skip to main content
Log in

New method for preparation Mn2O3–TiO2 nanocomposites and study of their photocatalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mn2O3–TiO2 nanocomposites is synthesized by the novel sol–gel method by using of manganese (II) chloride dihydrate and tetra-n-butyl titanate (TNBT). To control particle sizes of the nanocomposites, different acids such as oxalic acid, aspartic acid, and salicylic acid are applied. Acids played role as chelate agent to produce Mn2O3–TiO2 nanocomposites. The formation of pure crystallized Mn2O3–TiO2 nanocomposites occurred when the precursor was heat-treated at 700 °C in air for 150 min. The prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (UV–Vis), and energy dispersive X-ray microanalysis (EDX). Alternating gradient force magnetometer illustrated paramagnetic behaviour of Mn2O3–TiO2 nanocomposites. The photocatalytic behaviour of Mn2O3–TiO2 nanocomposites was evaluated using the degradation of methyl orange under ultraviolet light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. S. Khademolhoseini, J. Mater. Sci. 27, 10759 (2016)

    Google Scholar 

  2. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci. 27, 3240 (2016)

    Google Scholar 

  3. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab. J. Mater. Sci. 27, 7548 (2016)

    Google Scholar 

  4. M. Choi, K.H. Shin, J. Jang, J. Colloid Interface Sci. 341, 83–87 (2010)

    Article  Google Scholar 

  5. A. Sobhani-Nasab, M. Behpour, J. Mater. Sci. 27, 11946 (2016)

    Google Scholar 

  6. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci. 27, 11691 (2016)

    Google Scholar 

  7. S.A. Hosseini, J. Mater. Sci. 27, 6517 (2016)

    Google Scholar 

  8. R. Talebi, J. Mater. Sci. 27, 10770 (2016)

    Google Scholar 

  9. H. Kong, J. Song, J. Jang, Environ. Sci. Technol. 44, 5672 (2010)

    Article  Google Scholar 

  10. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A. Yeganeh Faal, S. Bagheri, Adv. Powder Technol. 27, 2066 (2016)

    Article  Google Scholar 

  11. S.L. Suib, Curr. Opin. Solid State Mater. Sci 3, 63 (1998)

    Article  Google Scholar 

  12. J.E. Post, Proc. Natl. Acad. Sci. U.S.A. 96, 3447 (1999)

    Article  Google Scholar 

  13. J. Yuan, K. Laubernds, Q. Zhang, S.L. Suib, J. Am. Chem. Soc. 125, 4966 (2003)

    Article  Google Scholar 

  14. F. Kapteijn, L. Singoredjo, A. Andreini, Appl. Catal. B 3, 173 (1994)

    Article  Google Scholar 

  15. B.Q. Jiang, Y. Liu, Z.B. Wu, J. Hazard. Mater 162, 1249 (2009)

    Article  Google Scholar 

  16. W. Li, S.T. Oyama, J. Am. Chem. Soc. 120, 9047 (1998)

    Article  Google Scholar 

  17. J.M. Gallardo-Amores, T. Armaroli, G. Ramis, E. Finocchio, G. Busca, Appl. Catal. B 22, 249 (1999)

    Article  Google Scholar 

  18. S. Futamura, A. Zhang, H. Einaga, H. Kabashima, Catal. Today 72, 259 (2002)

    Article  Google Scholar 

  19. H. Einaga, M. Harada, A. Ogata, Catal. Lett 129, 422 (2009)

    Article  Google Scholar 

  20. W.S. Kijlstra, D.S. Brands, H.I. Smit, E.K. Poels, A. Bliek, J. Catal 171, 219 (1997)

    Article  Google Scholar 

  21. H.Y. Huang, R.T. Yang, Langmuir 17, 4997 (2001)

    Article  Google Scholar 

  22. G. Qi, R.T. Yang, Appl. Catal. B 44, 217 (2003)

    Article  Google Scholar 

  23. J.M. Garcia-Corte, J. Perez-Ramirez, M.J. Illan-Gomez, C. Salinas-Martinez de Lecea, Catal. Commun 4, 165 (2003)

    Article  Google Scholar 

  24. D.A. Pena, B.S. Uphade, P.G. Smirniotis, J. Catal 221, 421 (2004)

    Article  Google Scholar 

  25. D. Yu, Y. Liu, Z. Wu, Catal. Commun 11, 788 (2010)

    Article  Google Scholar 

  26. M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, M. Inagaki, Appl. Catal. B 49, 227 (2004)

    Article  Google Scholar 

  27. G. Tian, H. Fu, L. Jing, C. Tian, J. Hazard. Mater 161, 1122 (2009)

    Article  Google Scholar 

  28. N. Balázs, D.F. Srankó, A. Dombi, P. Sipos, K. Mogyorósi, Appl. Catal. B 96, 569 (2010)

    Article  Google Scholar 

  29. S.M. Hosseinpour-mashkani, A. Sobhani-Nasab, M. Mehrzad, J. Mater. Sci: Mater. Electron. 27, 5758 (2016)  

    Google Scholar 

  30. Z.B. Wu, B.Q. Jiang, Y. Liu, W.R. Zhao, B.H. Guan, J. Hazard. Mater 145, 488 (2007)

    Article  Google Scholar 

  31. W. Tian, X. Fan, H. Yang, X. Zhang, J. Hazard. Mater 177, 887 (2010)

    Article  Google Scholar 

  32. Z. Wu, B. Jiang, Y. Liu, Appl. Catal. B 79, 347 (2008)

    Article  Google Scholar 

  33. Z. Wu, N. Tang, L. Xiao, Y. Liu, H. Wang, J. Colloid Interface Sci 352, 143 (2010)

    Article  Google Scholar 

  34. M. Aliahmad, A. Rahdar, Y. Azizi, J. Nanostruct 4, 145 (2014)

    Google Scholar 

  35. F. Azizi, F. molani, J. Nanostruct. 6, 58 (2016)

    Google Scholar 

  36. S. Farhadi, F. Siadatnasab, K. Jahanara, J. Nanostruct, 3, 227 (2013)

    Google Scholar 

  37. M. Behpour, M. Mehrzad, S.M. Hosseinpour-Mashkani, J. Nanostruct. 5, 183 (2015)

    Google Scholar 

  38. M. Enhessari, M. Kargar-Razi, P. Moarefi, A. Parviz, J. Nanostruct. 2, 119 (2012)

    Google Scholar 

  39. L. Torkian, E. Amereh, J. Nanostruct. 6, 307 (2016)

    Google Scholar 

  40. M. Ebadi, H. Shagholani, H. Jahangir, J. Nanostruct. 6, 23 (2016)

    Google Scholar 

  41. A. Kabiri, G. Nabiyouni, P. Boroujerdian, J. Ghasemi, A. Fattahi, J. Nanostruct. 3, 421 (2013)

    Google Scholar 

  42. M.R. Dousti, R.J. Amjad, J. Nanostruct. 3, 435 (2013)

    Google Scholar 

  43. L. Hashemi, A. Tahmasian, A. Morsali, J. Abedini, J. Nanostruct. 2, 163 (2012)

    Google Scholar 

  44. A. Sobhani-Nasab, M. Rangraz-Jeddy, A. Avanes, M. Salavati-Niasari, J. Mater. Sci. 26, 9552 (2015)

    Google Scholar 

  45. A. Sobhani-Nasab, M. Behpour, J. Mater. Sci. 27, 1191 (2016)

    Google Scholar 

  46. A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, S. Bagheri, J. Clust. Sci. 26, 1305 (2015)

    Article  Google Scholar 

  47. A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, H. Taqriri, S. Bagheri, K. Saberyan, J. Mater. Sci. 26, 5735 (2015)

    Google Scholar 

  48. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Mater. Sci. 27, 474 (2016)

    Google Scholar 

  49. M. Behpour, M. Chakeri, J. Nanostruct. 2, 227 (2012)

    Google Scholar 

  50. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, M. Maddahf, J. Nanostruct. 6, 67 (2016)

    Google Scholar 

  51. S.S. Hosseinpour-Mashkani, S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci. 27, 4351 (2016)

    Google Scholar 

  52. A. Sobhani-Nasab, M. Sadeghi, J. Mater. Sci. 27, 7933 (2016)

    Google Scholar 

  53. M. Ramezani, A. Sobhani-Nasab, A. Davoodi, J. Mater. Sci. 26, 5440 (2015)

    Google Scholar 

  54. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Electron. Mater. 45, 3612 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Padideh Noavaran Nano Bonyan Company, Iran, for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhollah Talebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, R. New method for preparation Mn2O3–TiO2 nanocomposites and study of their photocatalytic properties. J Mater Sci: Mater Electron 28, 8316–8321 (2017). https://doi.org/10.1007/s10854-017-6546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6546-x

Keywords

Navigation