Skip to main content
Log in

Chemical functionalization of graphene oxide and its electrochemical potential towards the reduction of triiodide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Among a diverse set of properties, graphene is also noted for its electrochemical and catalytic capabilities. These can also be influenced by functionalization of graphene. This study reports the chemical functionalization of graphene oxide (GO) with an aromatic compound 4-hydroxy-4′-n-pentylbiphenyl, by an esterification reaction. Formation of new coupled product was investigated through scanning electron microscopy, X-rays diffractometer, Fourier-transform infrared, and UV–Vis spectrometry studies. UV–visible spectrometry also indicated an increase in band gap energy, likely due to the Burstein–Moss effect. Electrochemically, the esterified product was found to be better than GO in terms of triiodide reduction, which gives plausible worth to exploring this functionalization strategy further for the development of counter electrode materials for dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.A. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  Google Scholar 

  2. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, S.R. Ruoff. Nature 442, 282 (2006)

    Article  Google Scholar 

  3. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  Google Scholar 

  4. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)

    Article  Google Scholar 

  5. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nanoletters, 8, 902 (2008)

    Article  Google Scholar 

  6. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nanoletters, 8, 3498 (2008)

    Article  Google Scholar 

  7. M. Burghard, H. Klauk, K. Kern, Adv. Mater. 21, 2586 (2009)

    Article  Google Scholar 

  8. S. Alwarappan, A. Erdem, C. Liu, C.Z. Li, J. Phys. Chem. C 113, 8853 (2009)

    Article  Google Scholar 

  9. Y. Wang, Y. Li, L. Tang, J. Lu, J. Li, Electrochem. Commun. 11, 889 (2009)

    Article  Google Scholar 

  10. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Electroanalysis, 22, 1027 (2010)

    Article  Google Scholar 

  11. Y. Liu, Y. Liu, H. Feng, Y. Wu, L. Joshi, X. Zeng, J. Li, Biosens. Bioelectron. 35, 63 (2012)

    Article  Google Scholar 

  12. D.A. Brownson, D.K. Kampouris, C.E. Banks, J. Power Sour. 196, 4873 (2011)

    Article  Google Scholar 

  13. C. Hu, L. Song, Z. Zhang, N. Chen, Z. Feng, L. Qu, Energy Environ. Sci. 8, 31 (2015)

    Article  Google Scholar 

  14. Z. Liu, J.T. Robinson, X. Sun, H. Dai, J. Am. Chem. Soc. 130, 10876 (2008)

    Article  Google Scholar 

  15. Z. Yang, H. Nie, X.A. Chen, X. Chen, S. Huang. J. Power Sour. 236, 238 (2013)

    Article  Google Scholar 

  16. D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Nat. Nanotechnol. 11, 218 (2016)

    Article  Google Scholar 

  17. P. Lü, Y. Feng, X. Zhang, Y. Li, W. Feng, Sci. China Technol. Sci., 53, 2311 (2010)

    Article  Google Scholar 

  18. D. Chen, H. Feng, J. Li, Chem. Rev. 112, 6027 (2012)

    Article  Google Scholar 

  19. Y. Hu, X. Sun, In Advances in Graphene Science, ed. by M. Aliofkhazraei, InTech, Rijeka, Croatia (2013)

    Google Scholar 

  20. Y. Wang, J. Lu, L. Tang, H. Chang, J. Li, Anal. Chem. 81, 9710 (2009)

    Article  Google Scholar 

  21. S. Wang, D. Yu, L. Dai, D.W. Chang, J.B. Baek, ACS Nano 5, 6202 (2011)

    Article  Google Scholar 

  22. T. Gao, D. Yang, L. Ning, L. Lei, Z. Ye, G. Li, Nanoscale 6, 14828 (2014)

    Article  Google Scholar 

  23. C.K. Chua, M. Pumera, ACS Nano 9, 4193 (2015)

    Article  Google Scholar 

  24. M. Liu, R. Liu, W. Chen, Biosens. Bioelectron. 45, 206 (2013)

    Article  Google Scholar 

  25. X. Gao, G. Xu, Y. Zhao, S. Li, F. Shi, Y. Chen, RSC Adv. 5, 88045 (2015)

    Article  Google Scholar 

  26. B.O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  27. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993)

    Article  Google Scholar 

  28. A. Kay, M. Grätzel, Sol. Energy Mater. Sol. C, 44, 99 (1996)

    Article  Google Scholar 

  29. J.E. Trancik, S.C. Barton, J. Hone, Nanoletters 8,982 (2008)

    Article  Google Scholar 

  30. J.D. Roy-Mayhew, D.J. Bozym, C.A. Punckt, C.I. Aksay, ACS Nano 4, 6203 (2010)

    Article  Google Scholar 

  31. P. Hasin, M.A. Alpuche-Aviles, Y. Wu, J. Phys. Chem. C 114(37), 15857 (2010)

    Article  Google Scholar 

  32. A. Kaniyoor, S. Ramaprabhu, In 2011 International conference on nanoscience, technology and societal implications (NSTSI) (IEEE, 2011) pp1

  33. X. Pan, K. Zhu, G. Ren, N. Islam, J. Warzywoda, Z. Fan, J. Mater. Chem. A 2, 12746 (2014)

    Article  Google Scholar 

  34. P.M. Hallam, C.E. Banks, Electrochem. Commun. 13, 8 (2011)

    Article  Google Scholar 

  35. G. Wang, W. Xing, S. Zhuo. Electrochim. Acta 92, 269 (2013)

    Article  Google Scholar 

  36. S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S.Y. Lee, Y.S. Kang, W. Choi, Adv. Funct. Mater. 21, 3729 (2011)

    Article  Google Scholar 

  37. S. Das, P. Sudhagar, E. Ito, D.Y. Lee, S. Nagarajan, S.Y. Lee, Y.S. Kang, W. Choi, J. Mater. Chem. 22, 20490 (2012)

    Article  Google Scholar 

  38. A. Kaniyoor, S. Ramaprabhu, J. Mater. Chem. 22, 8377 (2012)

    Article  Google Scholar 

  39. W. Liu, Y. Fang, P. Xu, Y. Lin, X. Yin, G. Tang, M. He, ACS Appl. Mater. Interfaces 6, 16249 (2014)

    Article  Google Scholar 

  40. W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Electrochem. Commun. 10, 1555 (2008)

    Article  Google Scholar 

  41. Z.Y. Li, M.S. Akhtar, J.H. Kuk, B.S. Kong, O.B. Yang, Mater. Lett. 86, 96 (2012)

    Article  Google Scholar 

  42. C. Punckt, M.A. Pope, J. Liu, Y. Lin, I.A. Aksay, Electroanalysis 22, 2834 (2010)

    Article  Google Scholar 

  43. L. Gan, S. Shang, C.W.M. Yuen, S. X. Jiang, RSC Adv. 5, 15954 (2015)

    Article  Google Scholar 

  44. H. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett. 287, 53 (1998)

    Article  Google Scholar 

  45. Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, Y. Chen, Carbon 47, 3113 (2009)

    Article  Google Scholar 

  46. D. Yu, Y. Yang, M. Durstock, J.B. Baek, L. Dai, ACS Nano 4, 5633 (2010)

    Article  Google Scholar 

  47. N.M. Huang, H.N. Lim, C.H. Chia, M.A. Yarmo, M.R. Muhamad, Int. J. Nanomed. 6, 3443 (2011)

    Article  Google Scholar 

  48. D. Li, M.B. Mueller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3, 101 (2008)

    Article  Google Scholar 

  49. J. Yang, X. Zhao, X. Shan, H. Fan, L. Yang, Y. Zhang, X. Li, J. Alloy. Compd. 556, 1 (2013)

    Article  Google Scholar 

  50. Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, J. Photochem. Photobiol. A, 164, 153 (2004)

    Article  Google Scholar 

  51. S. Siddiqui, P.U. Arumugam, H. Chen, J. Li, M. Meyyappan, ACS Nano 4, 955 (2010)

    Article  Google Scholar 

  52. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Carbon 49, 2917 (2011)

    Article  Google Scholar 

  53. W. Gao, S. Cao, Y. Yang, H. Wang, J. Li, Y. Jiang, Thin Solid Films 520, 6916 (2012)

    Article  Google Scholar 

  54. E. Ramasamy, W.J. Lee, D.Y. Lee, J. Song, Electrochem. Commun. 10, 1087 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Z. H. gratefully acknowledges support from Prof. Dr. M. Mujahid, SCME–NUST for CV measurement through BioLogic VSP System purchased under NRPU Project No. 20-1603/R&D/09/2236 funded by the Higher Education Commission (HEC) of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakir Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qudsia, S., Ahmed, M.I., Hussain, Z. et al. Chemical functionalization of graphene oxide and its electrochemical potential towards the reduction of triiodide. J Mater Sci: Mater Electron 28, 6664–6672 (2017). https://doi.org/10.1007/s10854-017-6358-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6358-z

Keywords

Navigation