Skip to main content
Log in

Effect of Cobalt doping on ZnS nanoparticles synthesized by microwave irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnS nanoparticles were prepared by microwave assisted chemical method using Polyvinylpyrrolidone (PVP) with different Cobalt (Co) concentration. We studied the compositional and structural properties of these samples by energy dispersive analysis of X-rays, X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. Size of the spherically shaped nanoparticles with aggregation is estimated to be in the range from 3 to 7 nm as seen from TEM images. Diffracted planes corresponding to cubic phase are observed in XRD pattern and average crystallite size is calculated through full width at half maximum from these diffracted planes. TO and LO phonon modes allowed in cubic phase for undoped and Co doped ZnS nanoparticles are studied by Raman spectroscopy whereas interaction between PVP with ZnS nanoparticles is studied using Fourier transform infrared spectroscopy (FTIR). Energy bandgap is calculated by UV–Vis absorption spectroscopy using Tauc plot and blue shift is observed with increased Co doping concentration into ZnS nanoparticles. Localized structure of the ZnS nanoparticles are strongly influenced by Co doping concentration as observed by photoluminescence (PL) spectroscopy which revealed the new emission peak at 519 nm. We could also observe quenching effect of PL intensity as a function of Co concentration in ZnS nanoparticles. Magnetic study on the 15% Co doped ZnS nanoparticles do not show ferromagnetic behavior. Antimicrobial effect is not observed against E. coli bacteria for Pure and 15% Co doped ZnS nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Ashokkumar, S. Muthukumaran, J. Magn. Magn. Mater. 374, 61–66 (2015)

    Article  Google Scholar 

  2. S. Prasanth, P. Irshad, D. Rithesh Raj, T.V. Vineeshkumar, R. Philip, C. Sudarsanakumar, J. Lumin. 166, 167–175 (2015)

    Article  Google Scholar 

  3. B. Poornaprakash, P.T. Poojitha, U. Chalapathi, K. Subramanyam, S.-H. Park, Physica E 83, 180–185 (2016)

    Article  Google Scholar 

  4. S. Ummartyotin, Y. Infahsaeng, Renew. Sustain. Energy Rev. 55, 17–24 (2016)

    Article  Google Scholar 

  5. D. Saikia, R.D. Raland, J.P. Borah, Physica E 83, 56–63 (2016)

    Article  Google Scholar 

  6. P. Wu, X.-P. Yan, Chem. Soc. Rev. 42, 5489–5521 (2013)

    Article  Google Scholar 

  7. B. Poornaprakash, P.T. Poojitha, U. Chalapathi, S.-H. Park, Mater. Lett. 181, 227–230 (2016)

    Article  Google Scholar 

  8. F.C. Romeiro, J.Z. Marinho, S.C.S. Lemos, A.P. de Moura, P.G. Freire, L.F. da Silva, E. Longo, R.A.A. Munoz, R.C. Lima, J. Solid State Chem. 230, 343–349 (2015)

    Article  Google Scholar 

  9. J. Díaz-Reyes, R.S. Castillo-Ojeda, R. Sanchez-Espíndola, M. Galvan-Arellano, O. Zaca-Moran, Curr. Appl. Phys. 15, 103–109 (2015)

    Article  Google Scholar 

  10. P. Iranmanesha, S. Saeednia, M. Nourzpoor, Chin. Phys. B 24(4), 046104 (2015) (1–4)

    Article  Google Scholar 

  11. S. Kumar, N.K. Verma, J. Magn. Magn. Mater. 374, 548–552 (2015)

    Article  Google Scholar 

  12. X.B. Chen, N. Yang, X.F. Liu, R.H. Yu, Phys. Scr. 88, 035703 (2013) (1–6)

    Article  Google Scholar 

  13. M.S. Akhtar, Y.G. Alghamdi, M.A. Malik, R.M.A. Khalil, S. Riaz, S. Naseem, J. Mater. Chem. C 3, 6755–6763 (2015)

    Article  Google Scholar 

  14. V. Gandhi, R. Ganesan, H. Syedahamed, M. Thaiyan, J. Phys. Chem. C 118, 9715–9725 (2014)

    Article  Google Scholar 

  15. R. Sarkar, C.S. Tiwary, P. Kumbhakar, A.K. Mitra, Physica B 404, 3855–3858 (2009)

    Article  Google Scholar 

  16. K.T. Vadiraj, S.L. Belagali, J. Mater. Sci. Mater. Electron. 27, 2885–2889 (2016)

    Article  Google Scholar 

  17. L. Bruno Chandrasekar, R. Chandramohan, R. Vijayalakshmi, S. Chandrasekaran, Int. Nano Lett. 5, 71–75 (2015)

    Article  Google Scholar 

  18. J. Cao, H. Niu, D. Han, S. Yang, Q. Liu, T. Wang, J. Yang, J. Mater. Sci. Mater. Med. 26, 236 (2015)

    Article  Google Scholar 

  19. J. El Ghoul, M. Kraini, O.M. Lemine, L. El Mir, J. Mater. Sci. Mater. Electron. 26, 2614–2621 (2015)

    Article  Google Scholar 

  20. S. Sambasivam, D. Paul Joseph, J.G. Lin, C. Venkateswaran, J. Solid State Chem. 182, 2598–2601 (2009)

    Article  Google Scholar 

  21. R. Wang, H. Liang, J. Hong, Z. Wang, J. Photochem. Photobiol. A 325, 62–67 (2016)

    Article  Google Scholar 

  22. L. Yin, D. Wang, J. Huang, L. Cao, H. Ouyang, X. Yong, J. Alloys Compd. 664, 476–480 (2016). doi:10.1016/j.jallcom.2015.10.281

    Article  Google Scholar 

  23. V. Venkatasubbian, R. Mohan, N. Punitha, K. Thamizharasan, Mater. Lett. 173, 5–8 (2016). doi:10.1016/j.matlet.2016.02.071

    Article  Google Scholar 

  24. J.K. Salem, T.M. Hammad, S. Kuhn, M.A. Draaz, N.K. Hejazy, R. Hempelmann, J. Mater. Sci. Mater. Electron. 25, 2177–2182 (2014)

    Article  Google Scholar 

  25. M. Ashokkumar, S. Muthukumaran, Opt. Mater. 37, 671–678 (2014)

    Article  Google Scholar 

  26. J. Trajic´, R. Kostic´, N. Romcˇevic´, M. Romcˇevic, M. Mitric´, V. Lazovic´, P. Balazˇ, D. Stojanovic´, J. Alloys Compd. 637, 401–406 (2015)

    Article  Google Scholar 

  27. B. Chong, L. Pan, X. Mei, J. Yin, Z. Guo, L. Qin, H. Zhu, J.Q. Xiao, Chem. Phys. Lett. 481, 220–223 (2009)

    Article  Google Scholar 

  28. R.K. Chandrakar, R.N. Baghel, V. K. Chandra, B.P. Chandra, Superlattices Microstruct. 84, 132–143 (2015)

    Article  Google Scholar 

  29. G. Ghosh, M. Naskar, A. Patra, M. Chatterjee, Opt. Mater. 28, 1047–1053 (2006)

    Article  Google Scholar 

  30. C. Bia, L. Pana, M. Xua, J. Yina, L. Qina, J. Liub, H. Zhuc, J.Q. Xiao, Mater. Chem. Phys. 116, 363–367 (2009)

    Article  Google Scholar 

  31. P. Yang, M. Lu, D. Xu, D. Yuan, C. Song, G. Zhou, J. Phys. Chem. Solids 62, 1181–1184 (2001)

    Article  Google Scholar 

  32. P. Yang, L. Mengkai, G. Zhou, D. Yuan, X. Dong, Inorg. Chem. Commun. 4, 734–737 (2001)

    Article  Google Scholar 

  33. P. Patel, S. Ghosh, P.C. Srivastava, J. Mater. Sci. 50, 7919–7929 (2015)

    Article  Google Scholar 

  34. P.H. Borse, N. Deshmukh, R.F. Shinde, S.K. Date, S.K. Kulkarni, J. Mater. Sci. 34, 6087–6093 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. Vasant Sathe, Dr. Mukul Gupta and Dr. Alok Banerjee UGC-DAE Consortium for Scientific Research, Indore, India for Raman measurements, powder XRD and SQUID measurements respectively. Thanks to SICART, V. V. Nagar, Anand, Gujarat for TEM, FTIR and UV–Vis analysis. Thanks are also extended to Narendra Chauhan, FCIPT/IPR, Gandhinagar, Gujarat for EDAX measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamakshi Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, K., Deshpande, M.P. & Chaki, S.H. Effect of Cobalt doping on ZnS nanoparticles synthesized by microwave irradiation. J Mater Sci: Mater Electron 28, 5029–5036 (2017). https://doi.org/10.1007/s10854-016-6159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6159-9

Keywords

Navigation