Skip to main content
Log in

Polycrystalline SnO2 thin films grown at different substrate temperature by pneumatic spray

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This article presents the elaboration of tin oxide (SnO2) thin films on glass substrates by using a home-made spray pyrolysis system. Effects of substrate temperature on structural, optical, and electrical film properties are investigated. The films are characterized by several techniques such as EDS, DRX, UV–visible transmission and four-probe point measurements, and the results suggest that the prepared films are uniform and well adherent to the substrates. Films thicknesses estimated by gravimetric method were between 1000 and 490 nm. X-ray diffraction patterns showed that SnO2 films were polycrystalline with cassiterite tetragonal crystal structure, having a preferential orientation along the (110) plane. Optical transmittance spectra of the films showed high transparency average transmittance greater than 75% in the visible region. The optical gap of SnO2 thin films are found to be in a range of 3.33–3.96 eV. The measured electrical conductivity at room temperature was found in the order of 102 (Ω cm)−1. Moreover, figure of merit for SnO2 thin films revealed maximum value about 1.48 × 10−3−1) at λ = 850 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Kikuchi, E. Kusano, E. Kishio, A. Kingara, Vacuum 66, 365 (2002)

    Article  Google Scholar 

  2. H. Man-Soo, H.J. Lee, H.S. Jeong, Y.W. Seo, S.J. Kwon, Surf. Coat. Technol. 29, 171 (2003)

    Google Scholar 

  3. K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, S. Niki, Thin Solid Films 431–432, 369 (2003)

    Article  Google Scholar 

  4. W. Wohlmuth, I. Adesida, Thin Solid Films 479, 223 (2005)

    Article  Google Scholar 

  5. J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, Z.L. Wang, Small 1, 116 (2006)

    Article  Google Scholar 

  6. H. Cao, X. Qiu, Y. Liang, L. Zhang, Q. ZhaoMand Zhu, Chem. Phys. Chem. 7, 497 (2006)

    Google Scholar 

  7. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)

    Article  Google Scholar 

  8. E. Fortunato, D. Ginly, H. Hosono, D.C. Paine, MRS Bull. 32, 242–247 (2007)

    Article  Google Scholar 

  9. U.R. Chaudhuri, K. Ramkumar, M. Satyam, J. Phys. D Appl. Phys. 23, 994 (1990)

    Article  Google Scholar 

  10. H.H. Afify, F.S. Terra, R.S. Momtaz, J. Mater. Sci. Mater. Electron. 7, 149 (1996)

    Article  Google Scholar 

  11. A. Abdelkrim, S. Rahmane, O. Abdelouahab, N. Abdelmalek, G. Brahim, Optik 127, 2653–2658 (2016)

    Article  Google Scholar 

  12. S. Chacko, N.S. Philip, K.G. Gophandran, P. Koshy, V.K. Vaidyan, Appl. Surf. Chem. 254, 2179–2186 (2008)

    Article  Google Scholar 

  13. C.E. Benouis, M. Benhaliliba, F. Yakuphanoglu, A. Tiburcio Silver, M.S. Aida, A. Sanchez Juarez, Synth. Met. 161, 1509–1516 (2011)

    Article  Google Scholar 

  14. M. Caglar, Y. Caglar, S. Ilıcan, J. Optoelectron. Mater. 8(4), 1410–1413 (2006)

    Google Scholar 

  15. M. Bedir, M. Oztas, O.F. Bakkaoglu, R. Ormanel, Eur. Phys. J. B 5(4), 465–471 (2005)

    Article  Google Scholar 

  16. G. Turgut, E. Sönmez, M. Yılmaz, M.S. Çögenli, M. Yılmaz, Ü. Turgut, Refik Dilber, J. Mater. Sci. Mater. Electron. 25, 2808–2828 (2014)

    Article  Google Scholar 

  17. S. Kahraman, F. Bayansal, H.M. Çakmak, H.A. Çetinkara, H.S. Güder, Appl. Phys. A 109, 87–93 (2012)

    Article  Google Scholar 

  18. B. Thangaraju, Thin Solid Films 402, 71 (2002)

    Article  Google Scholar 

  19. R.R. Kasar, N.G. Deshpande, Y.G. Gudage, J.C. Vyas, S. Ramphal, Phys. B 403, 3724 (2008)

    Article  Google Scholar 

  20. A. Hartridge, M.G. Krishna, A.K. Bhattacharya, J. Phys. Chem. Solids 59(6–7), 859 (1998)

    Article  Google Scholar 

  21. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)

    Article  Google Scholar 

  22. I. Chambouleyron, J.M. Martinez, A.C. Morelti, M. Mulato, Appl. Opt. 36, 8238 (1997)

    Article  Google Scholar 

  23. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627 (1966)

    Article  Google Scholar 

  24. E.F. Keskenler, G. Turgut, S. Dogan, Superlattices Microstruct. 52, 107–115 (2012)

    Article  Google Scholar 

  25. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  Google Scholar 

  26. T.S. Moss, Proc. Phys. Soc. Lond. B 67, 775 (1954)

    Article  Google Scholar 

  27. G.H. Lee, Y. Yamamoto, M. Kourogi, M. Ohtsu, Thin Solid Films 386, 117 (2001)

    Article  Google Scholar 

  28. A.K.S. Aqili, N.A. Shah, A. Ali, A. Maqsood, Sci. Int. (Lahre) 18(1), 1–3 (2006)

    Google Scholar 

  29. F. Mezrag, W.K. Mohamed, N. Bouarissa, Phys. B 405, 2272–2276 (2010)

    Article  Google Scholar 

  30. P. Herve, L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994)

    Article  Google Scholar 

  31. M.A. Yıldırım, Y. Akaltun, A. Ates, Solid State Sci. 14, 1282–1288 (2012)

    Article  Google Scholar 

  32. M. Born, E. Wolf, Principle of Optics (Pergamon, New York, 1975), p. 85

    Google Scholar 

  33. J.P. Chatelon, C. Terrier, J.A. Roger, Semicond. Sci. Technol. 14, 642 (1999)

    Article  Google Scholar 

  34. N. Memarian, S.M. Rozati, Acta Phys. Pol. A 122, 202 (2012)

    Article  Google Scholar 

  35. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, J. Alloys Compd. 505, 416–422 (2010)

    Article  Google Scholar 

  36. S.S. Lekshmy, K. Joy, J. Sol-Gel Sci. Technol. 67, 29–38 (2013)

    Article  Google Scholar 

  37. A. Abdel krim, S. Rahmane, O. Abdel ouahab, A. Hafida, K. Nabila, Chin. Phys. B 25(4), 046801 (2016)

    Article  Google Scholar 

  38. K. Ravichandran, A. Anbazhagan, N. Dineshbabu, C. Ravidhas, J. Mater. Sci. Mater. Electron. 26, 7649–7654 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saâd Rahmane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkrim, A., Rahmane, S., Nabila, K. et al. Polycrystalline SnO2 thin films grown at different substrate temperature by pneumatic spray. J Mater Sci: Mater Electron 28, 4772–4779 (2017). https://doi.org/10.1007/s10854-016-6122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6122-9

Keywords

Navigation