Skip to main content
Log in

Optimizing the procedure for the synthesis of nanoscale gadolinium(III) tungstate as efficient photocatalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The parameters affecting the properties of the product obtained through the precipitation reaction between Gd3+ and WO4 2− ions were optimized through the Taguchi robust design and the final product was studied in terms of its physico-chemical characteristics to evaluate the effect of the parameters. The chemical precipitation reaction used to this end involved the direct addition of solutions of Gd3+ to those of WO4 2− in aqueous solvents and the variables studied included the concentrations of the ionic species as well as the flow rate of the cation solution added to the anion solution (Fz) and the reaction temperature. The analysis of variance of the results revealed that manipualting the WO4 2− concentration, Fz and the reaction temperature can lead to optimal results. The optimum product was finally characterized through X-ray diffraction, scanning electron microscopy, FT-IR and UV–Vis spectroscopic techniques. Furthermore, the as-synthsized gadolinium tungstate nanoparticles were used as an efficient photocatalyst for the photocatalytic degradation of methylene blue under ultraviolet light, and the results showed that the prepared gadolinium tungstate particles possessed superior photocatalitic activity than TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Safaei Ghomi, R. Teymuri, A. Ziarati, Monatshefte für Chemie-Chemical Monthly 144, 1865 (2013)

    Article  Google Scholar 

  2. J. Safaei-Ghomi, A. Ziarati, M. Tamimi, Acta Chim. Slov. 60, 403 (2013)

    Google Scholar 

  3. H.R. Naderi, P. Norouzi, M.R. Ganjali, Appl. Surf. Sci. 366, 552 (2016)

    Article  Google Scholar 

  4. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M. Rangraz Jeddy, J. Mater. Sci. Mater. Electron. 27, 11691 (2016)

    Article  Google Scholar 

  5. M. Amiri, H. Salehniya, A. Habibi-Yangjeh, Ind. Eng. Chem. Res. 55, 8114 (2016)

    Article  Google Scholar 

  6. A. Akhundi, A. Habibi-Yangjeh, Mater. Chem. Phys. 174, 59 (2016)

    Article  Google Scholar 

  7. M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, J. Mater. Sci. Mater. Electron. 27, 11873 (2016)

    Article  Google Scholar 

  8. M. Pirhashemi, A. Habibi-Yangjeh, J. Mater. Sci. Mater. Electron. 27, 4098 (2016)

    Article  Google Scholar 

  9. M. Mousavi, A. Habibi-Yangjeh, J. Mater. Sci. Mater. Electron. 27, 8532 (2016)

    Article  Google Scholar 

  10. C.H. Xiong, Y. Meng, C.P. Yao, C. Shen, J. Rare Earth. 27, 923 (2009)

    Article  Google Scholar 

  11. N. Das, D. Das, J. Rare Earth. 31, 933 (2013)

    Article  Google Scholar 

  12. C.A. Morais, V.S.T. Ciminelli, Hydrometallurgy 73, 237 (2004)

    Article  Google Scholar 

  13. T. Alizadeh, M.R. Ganjali, M. Akhoundian, P. Norouzi, Microchim. Acta 183, 1123 (2016)

    Article  Google Scholar 

  14. E.S.C. Emmanuel, T. Anathi, B. Anandkumar, S. Marimuthu, J. Biosci. 37, 25 (2012)

    Article  Google Scholar 

  15. M. Xu, W. Gao, H. Zhang, X. Cheng, X. Xu, J. Wang, R.I. Boughton, J. Alloy. Compd. 509, 8455 (2011)

    Article  Google Scholar 

  16. K. Nassau, J.W. Shiever, E.T. Keve, J. Solid State Chem. 3, 411 (1971)

    Article  Google Scholar 

  17. H.J. Borchardt, P.E. Bierstedt, J. Appl. Phys. 38, 2057 (1967)

    Article  Google Scholar 

  18. H. Naruke, T. Yamase, Inorg. Chem. 41, 6514 (2002)

    Article  Google Scholar 

  19. F. Lei, B. Yan, H. Chen, J. Solid State Chem. 181, 2845 (2008)

    Article  Google Scholar 

  20. C.A. Kodaira, H.F. Brito, M.C.F.C. Felinto, J. Solid State Chem. 171, 401 (2003)

    Article  Google Scholar 

  21. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Khalilian-Shalamzari, S.S. Hajimirsadeghi, M.M. Zahedi, Open Chem. 11, 1393 (2013)

    Article  Google Scholar 

  22. S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, Mater. Sci. Semicond. Process. 16, 131 (2013)

    Article  Google Scholar 

  23. S.M. Pourmortazavi, M. Taghdiri, N. Samimi, M. Rahimi-Nasrabadi, Mater. Lett. 121, 5 (2014)

    Article  Google Scholar 

  24. M. Rahimi-Nasarabadi, F. Ahmadi, S. Hamdi, N. Eslami, K. Didehban, M.R. Ganjali, J. Mol. Liq. 216, 814 (2016)

    Article  Google Scholar 

  25. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, A.A. Davoudi-Dehaghani, S.S. Hajimirsadeghi, M.M. Zahedi, Cryst. Eng. Comm. 15, 4077 (2013)

    Article  Google Scholar 

  26. K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani, S.M. Pourmortazavi, F. Ahmadi, H.R. Naderi, M.R. Ganjali, J. Mater. Sci. Mater. Electron. 27, 4541 (2016)

    Article  Google Scholar 

  27. M. Rahimi-Nasrabadi, M.B. Ggolivand, A.R. Vatanara, S. Pourmohamadian, A. RouholaminiNajafabadi, H. Batooli, J. Herbs Spices Med. Plants 18, 318 (2012)

    Article  Google Scholar 

  28. S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, I. Kohsari, Synth. React. Inorg. Met. Org. Nano Met. Chem. 42, 746 (2012)

    Google Scholar 

  29. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, M. Khalilian-Shalamzari, H.R. Ghaeni, S.S. Hajimirsadeghi, J. Inorg. Organomet. Polym. Mater. 24, 333 (2014)

    Article  Google Scholar 

  30. Y. Fazli, S.M. Pourmortazavi, I. Kohsari, M.S. Karimi, M. Tajdari, J. Mater. Sci. Mater. Electron. 27, 7192 (2016)

    Article  Google Scholar 

  31. F. Ahmadi, M. Rahimi-Nasrabadi, A. Fosooni, M.H. Daneshmand, J. Mater. Sci. Mater. Electron. 27, 9514 (2016)

    Article  Google Scholar 

  32. M. Rahimi-Nasrabadi, J. Nano Struct. 4, 211 (2014)

    Google Scholar 

  33. S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, J. Dispers. Sci. Technol. 33, 254 (2012)

    Article  Google Scholar 

  34. M. Pourmortazavi, M. Rahimi-Nasrabadi, Y. Fazli, M. Mohammad-Zadeh, Int. J. Refract. Met. Hard Mater. 51, 29 (2015)

    Article  Google Scholar 

  35. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, Y. Fazli, M. Mohammad-Zadeh, Appl. Phys. A 119, 929 (2015)

    Article  Google Scholar 

  36. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Khalilian-Shalamzari, J. Mol. Struct. 1083, 229 (2015)

    Article  Google Scholar 

  37. P.J. Ross, Taguchi Techniques for Quality Engineering (McGraw-Hill, New York, 1988)

    Google Scholar 

  38. R.K. Roy, A Primer on the Taguchi Method (Van Nostrand Reinhold, New York, 1990)

    Google Scholar 

  39. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, A.R. Banan, F. Ahmadi, J. Mol. Struct. 1074, 85 (2014)

    Article  Google Scholar 

  40. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Norouzi, F. Faridbod, M. Sadeghpour Karimi, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5421-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Rahimi-Nasrabadi or Seied Mahdi Pourmortazavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi-Nasrabadi, M., Pourmortazavi, S.M., Aghazadeh, M. et al. Optimizing the procedure for the synthesis of nanoscale gadolinium(III) tungstate as efficient photocatalyst. J Mater Sci: Mater Electron 28, 3780–3788 (2017). https://doi.org/10.1007/s10854-016-5988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5988-x

Keywords

Navigation