Skip to main content
Log in

Wearable strain sensor made of carbonized cotton cloth

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An economical strain sensor is fabricated by sandwiching a carbonized cotton cloth (CC) between two polydimethylsilane (PDMS) films. The natural networks of carbon fibers in CC bring the sensor changeable resistance under strain. This sensor is used to monitor three types of strains, which are pressure, bending and torsion, while the resistance response of which shows exponential relation to strains. Response time of the sensor is less than 35 ms. The maximum resistance decrease of the CC sensor under pressure, bending and torsion are 27, 65 and 45% respectively. The gauge factors at 3% strain of the sensor under bending and torsion are 15 and 8 respectively. The sensor is compressed under pressure, and is stretched under bending or torsion. The sensor shows higher sensitivity under tension compared to that under compression. The high sensitivity, great flexibility and stability, easy fabricating make the CC sensor a promising candidate in wearable sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.Y. Cheng, X.H. Huang, C.W. Ma, Y.J. Yang, J. Micromech. Microeng. 19, 115001 (2009)

    Article  Google Scholar 

  2. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, P. Natl, Acad. Sci. USA 101, 9966 (2004)

    Article  Google Scholar 

  3. D.J. Lipomi, M. Vosgueritchian, B.C.K. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z.N. Bao, Nat. Nanotechnol. 6, 788 (2011)

    Article  Google Scholar 

  4. F.R. Fan, L. Lin, G. Zhu, W.Z. Wu, R. Zhang, Z.L. Wang, Nano Lett. 12, 3109 (2012)

    Article  Google Scholar 

  5. G.R. Kirikera, V. Shinde, I. Kang, M.J. Schulz, V. Shanov, S. Datta, D. Hurd, M. Sundaresan, A. Ghoshal, Smart Struct. Mater. 2004: Smart Sens. Technol. Meas. Syst. 5384, 148 (2004)

  6. D. Ryu, K.J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, A.M. Gusman, Smart Struct. Syst. 8, 471 (2011)

    Article  Google Scholar 

  7. D.H. Kim, N.S. Lu, R. Ma, Y.S. Kim, R.H. Kim, S.D. Wang et al., Science 333, 838 (2011)

    Article  Google Scholar 

  8. C. Wang, D. Hwang, Z.B. Yu, K. Takei, J. Park, T. Chen, B.W. Ma, A. Javey, Nat. Mater. 12, 899 (2013)

    Article  Google Scholar 

  9. Z.L. Wang, W.Z. Wu, Angew. Chem. Int. Ed. 51, 11700 (2012)

    Article  Google Scholar 

  10. Y.F. Hu, J. Yang, Q.S. Jing, S.M. Niu, W.Z. Wu, Z.L. Wang, ACS Nano 7, 10424 (2013)

    Article  Google Scholar 

  11. N.R. Alluri, B. Saravanakumar, S.J. Kim, Acs Appl. Mater. Interfaces 7, 9831 (2015)

    Article  Google Scholar 

  12. Y.W. Zhao, H.Q. Fan, G.C. Liu, Z.Y. Liu, X.H. Ren, J. Alloy. Compd. 675, 441 (2016)

    Article  Google Scholar 

  13. G.Z. Dong, H.Q. Fan, H.L. Tian, J.W. Fang, Q. Li, Rsc Adv. 5, 29618 (2015)

    Article  Google Scholar 

  14. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, Nat. Nanotechnol. 6, 296 (2011)

    Article  Google Scholar 

  15. C. Pang, G.Y. Lee, T.I. Kim, S.M. Kim, H.N. Kim, S.H. Ahn, K.Y. Suh, Nat. Mater. 11, 795 (2012)

    Article  Google Scholar 

  16. Q. Gao, H. Meguro, S. Okamoto, M. Kimura, Langmuir 28, 17593 (2012)

    Article  Google Scholar 

  17. S.C.B. Mannsfeld, B.C.K. Tee, R.M. Stoltenberg, C.V.H.H. Chen, S. Barman, B.V.O. Muir, A.N. Sokolov, C. Reese, Z.N. Bao, Nat. Mater. 9, 859 (2010)

    Article  Google Scholar 

  18. D.J. Cohen, D. Mitra, K. Peterson, M.M. Maharbiz, Nano Lett. 12, 1821 (2012)

    Article  Google Scholar 

  19. R. Matsuzaki, T. Keating, A. Todoroki, N. Hiraoka, Sens. Actuat. a-Phys. 148, 1 (2008)

    Article  Google Scholar 

  20. J. Zhou, Y.D. Gu, P. Fei, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Nano Lett. 8, 3035 (2008)

    Article  Google Scholar 

  21. Y.W. Zhao, H.Q. Fan, X.H. Ren, C.B. Long, G.C. Liu, Z.Y. Liu, J. Mater. Chem. C 4, 7324 (2016)

    Article  Google Scholar 

  22. J.W. Jeong, W.H. Yeo, A. Akhtar, J.J.S. Norton, Y.J. Kwack, S. Li et al., Adv. Mater. 25, 6839 (2013)

    Article  Google Scholar 

  23. Y. Yang, H.L. Zhang, Z.H. Lin, Y.S. Zhou, Q.S. Jing, Y.J. Su et al., ACS Nano 7, 9213 (2013)

    Article  Google Scholar 

  24. A.S. Wu, X. Nie, M.C. Hudspeth, W.W. Chen, T.W. Chou, D.S. Lashmore, M.W. Schauer, E. Towle, J. Rioux, Appl. Phys. Lett. 100, 201908 (2012)

    Article  Google Scholar 

  25. T.T. Yang, Y. Wang, X.M. Li, Y.Y. Zhang, X. Li, K.L. Wang et al., Nanoscale 6, 13053 (2014)

    Article  Google Scholar 

  26. J. Herrmann, K.H. Muller, T. Reda, G.R. Baxter, B. Raguse, G.J.J.B. de Groot, R. Chai, M. Roberts, L. Wieczorek, Appl. Phys. Lett. 91, 183105 (2007)

    Article  Google Scholar 

  27. H. Moreira, J. Grisolia, N.M. Sangeetha, N. Decorde, C. Farcau, B. Viallet, K. Chen, G. Viau, L. Ressier, Nanotechnology 24, 095701 (2013)

    Article  Google Scholar 

  28. M. Huth, J. Appl. Phys. 107, 113709 (2010)

    Article  Google Scholar 

  29. L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen, Z.L. Wang, ACS Nano 7, 8266 (2013)

    Article  Google Scholar 

  30. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, Nat. Commun. 5, 1 (2014)

    Google Scholar 

  31. X. Xiao, L.Y. Yuan, J.W. Zhong, T.P. Ding, Y. Liu, Z.X. Cai et al., Adv. Mater. 23, 5440 (2011)

    Article  Google Scholar 

  32. W. Jiao, L. Yi, C. Zhang, K. Wu, J. Li, L. Qian et al., Nanoscale 6, 13809 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11274055 and 61137005) and the Program for Liaoning Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lujun Pan.

Additional information

Ruixue Cui and Chengwei Li have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, C., Pan, L., Cui, R. et al. Wearable strain sensor made of carbonized cotton cloth. J Mater Sci: Mater Electron 28, 3535–3541 (2017). https://doi.org/10.1007/s10854-016-5954-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5954-7

Keywords

Navigation