Skip to main content
Log in

Ferroelectric, ferromagnetic, magnetodielectric and in-plane ME coupling properties of Pb(Zr0.52Ti0.48)O3–Bi0.9Nd0.1FeO3 bilayer nano-films prepared via Sol–gel processing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Biphasic magnetoelectric composite films composed of Pb(Zr0.52Ti0.48)O3 and Bi0.9Nd0.1FeO3 were successfully fabricated on Pt(111)/Ti/SiO2/Si(100) substrates via Sol–gel and Rapid Thermal Process, forming Pb(Zr0.52Ti0.48)O3/Bi0.9Nd0.1FeO3 and Bi0.9Nd0.1FeO3/Pb(Zr0.52Ti0.48)O3 bilayer structures due to the different deposition sequences. Phase formation and lattice parameters of the tetragonal PZT and rhombohedral BNF were confirmed in X-ray diffractograms. The scan electron micrographs showed that Pb(Zr0.52Ti0.48)O3 layer owns larger and closer grains than the corresponding Bi0.9Nd0.1FeO3 layer. Physical properties testing indicated that such bilayer nanostructures show simultaneously excellent ferroelectric and ferromagnetic properties, as well as conspicuous magnetodielectric and magnetoelectric effects. And meanwhile, the Bi0.9Nd0.1FeO3/Pb(Zr0.52Ti0.48)O3 thin films exhibit better ferroelectric, ferromagnetic, magnetodielectric and in-plane magnetoelectric coupling properties than Pb(Zr0.52Ti0.48)O3/Bi0.9Nd0.1FeO3 films, revealing the influence of interfacial effect caused by deposition sequences of the constituent phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Roy, Separating read and write units in multiferroic devices. Nature 5, 10822 (2015)

    Google Scholar 

  2. M. Liu, O. Obi, J. Lou, N. Sun, Tunable magnetoresistance devices based on multiferroic heterostructures. J. Appl. Phys. 109, 07D913 (2010)

    Article  Google Scholar 

  3. L.W. Martin, R. Ramesh, Multiferroic and magnetoelectric heterostructures. Acta Mater. 60, 2449–2470 (2012)

    Article  Google Scholar 

  4. K.K. Bharathi, G. Ramesh, L.N. Patro, N.R.C. Raju, D.K. Kim, Enhanced ferromagnetic properties and high temperature dielectric anomalies in Bi0.9Ca0.05Sm0.05FeO3 prepared by hydrothermal method. Mater. Res. Bull. 62, 5–10 (2015)

    Article  Google Scholar 

  5. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, Y.M. Hunge, P.K. Chougule, K.Y. Rajpure, C.H. Bhosale, Fabrication of Ni0.4Zn0.6Fe2O4–BaTiO3 bilayered thin films obtained by spray pyrolysis method for magnetoelectric (ME) effect measurement. J. Mater. Sci. Mater. Electron. 27, 3799–3811 (2016)

    Article  Google Scholar 

  6. M.G. Ranieri, R.A.C. Amoresi, M.A. Ramirez, J.A. Cortes, L.S.R. Rocha, C.C. Silva, A.Z. Simões, Magnetoelectricity at room temperature in the LaFeO3/BiFeO3 heterostructures. J. Mater. Sci. Mater. Electron. 27, 9325–9344 (2016)

    Article  Google Scholar 

  7. S. Dutta, R. Chatterjee, Electrical properties of Pb(Zr0.52Ti0.48)O3–BiFeO3 multilayers on non-platinized silicon substrate. Mater. Sci. Eng. B 198, 74–79 (2015)

    Article  Google Scholar 

  8. A. Kasiviswanathan Veerannan, Arockiarajan, Analytical, numerical and experimental studies on effective properties of layered (2–2) multiferroic composites. Sens. Actuators A 236, 380–393 (2015)

    Article  Google Scholar 

  9. J. Chen, Z. Tang, Y. Bai, S. Zhao, Multiferroic and magnetoelectric properties of BiFeO3/Bi4Ti3O12 bilayer composite films. J. Alloys Compd. 675, 257–265 (2016)

    Article  Google Scholar 

  10. S.-H. Jo, S.-G. Lee, Y.-H. Lee, Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol–gel method. Nanoscale Res. Lett. 7, 54–58 (2012)

    Article  Google Scholar 

  11. C. Deng, Y. Zhang, J. Ma, Y. Lin, C.-W. Nan, Magnetic-electric properties of epitaxial multiferroic NiFe2O4–BaTiO3 heterostructure. J. Appl. Phys. 102, 074114 (2007)

    Article  Google Scholar 

  12. Y. Bai, H. Zhao, J. Chen, Y. Sun, S. Zhao, Strong magnetoelectric coupling effect of BiFeO3/Bi5Ti3FeO15 bilayer composite films. Ceram. Int. 42, 10304–10309 (2016)

    Article  Google Scholar 

  13. O. Raymond, R. Font, J. Portelles, J.M. Siqueiros, Magnetoelectric coupling study in multiferroic Pb(Fe0.5Nb0.5)O3 ceramics through small and large electric signal standard measurements. J. Appl. Phys. 109, 094106–094110 (2011)

    Article  Google Scholar 

  14. K. Praveena, K.B.R. Varma, Enhanced electric field tunable magnetic properties of lead-free Na0.5Bi0.5TiO3–MnFe2O4 multiferroic composites. J. Mater. Sci. Mater. Electron. 25, 5403–5409 (2014)

    Article  Google Scholar 

  15. Z. Zhang, X. Wang, Effective multi-field properties of electro-magneto-thermoelastic composites estimated by finite element method approach. Acta Mech. Solida Sin. 28, 145–155 (2015)

    Article  Google Scholar 

  16. J.H. Cheng, Y.G. Wang, D. Xie, Magnetoelectric properties in Ni/Pb(Zr, Ti)O3/FeCo laminated composites with different extensional strain modes. Mater. Lett. 143, 273–275 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the joint finance project of Guizhou Science and Technology Agency with Guizhou University (Grant No. LH [2014]7612) and the talent introduction item of Guizhou University (Grant No. [2014]30). All authors also are grateful for the support of the Master’s innovation funds of Guizhou University (Grant No. 2016065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaixin Guo or Rongfen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Mou, Q., He, T. et al. Ferroelectric, ferromagnetic, magnetodielectric and in-plane ME coupling properties of Pb(Zr0.52Ti0.48)O3–Bi0.9Nd0.1FeO3 bilayer nano-films prepared via Sol–gel processing. J Mater Sci: Mater Electron 28, 1971–1975 (2017). https://doi.org/10.1007/s10854-016-5751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5751-3

Keywords

Navigation