Skip to main content
Log in

Tunable perfect metamaterial absorber and sensor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Operation frequencies of traditional metamaterial absorbers are fixed meaning that it is not possible to change that frequency after the fabrication. Therefore, more studies are focused on the design of Tunable metamaterial absorber (TMA) since it is important to expand operation frequency. If the impedance of one or more layers of an absorber can be changed according to the applied electrical optical signal, then it would be possible to realize tunable absorbing designs. However, TMA studies reported previously are mainly focused on absorbing mechanism at microwave frequencies. In this study, TMA with varactor diode is designed and analyzed for absorber and sensor configurations. TMA is constructed by using a simple rectangular-shape geometry having two splits and a varactor diode placed at the right split. Numerical and experimental results show that perfect absorption is achieved when 0–10 V reverse bias voltage is applied. Resonance frequency can be easily tuned by changing the reverse bias voltage. Frequency dependent absorption behavior of TMA is presented with respect to different incident angles for TE and TM polarizations. A sensor application, knowing the absorption resonance frequency can provide the ability to determine the temperature of materials. The novelty of the study is to determine the temperature or the other parameters such as humidity or pressure by using TMA. It is also possible to determine the material type or its density if limited resource such as frequency generator is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.P. Scarborough, Z.H. Jiang, D.H. Werner, C. Rivero-Baleine, C. Drake, Experimental demonstration of an isotropic metamaterial super lens with negative unity permeability at 8.5 MHz. Appl. Phys. Lett. 101, 014101–014104 (2012)

    Article  Google Scholar 

  2. S. Maci, A cloaking metamaterial based on an inhomogeneous linear field transformation. IEEE Trans. Antennas Propag. 58, 1136–1143 (2010)

    Article  Google Scholar 

  3. C. Sabah, M.D. Thomson, F. Meng, S. Tzanova, H.G. Roskos, Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: pass-bands and signatures of abnormal group velocities. J. Appl. Phys. 110, 064902 (2010)

    Article  Google Scholar 

  4. C. Sabah, F. Dincer, M. Karaaslan, E. Unal, O. Akgol, E. Demirel, Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application. Opt. Commun. 322, 137–142 (2014)

    Article  Google Scholar 

  5. F. Bilotti, L. Nucci, L. Vegni, An SRR-based microwave absorber. Microw. Opt. Technol. Lett. 48, 2171–2175 (2006)

    Article  Google Scholar 

  6. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  Google Scholar 

  7. Q. Cheng, T.J. Cui, W.X. Jiang, B.G. Cai, An omnidirectional electromagnetic absorber made of metamaterials. New J. Phys. 12, 063006–063015 (2012)

    Article  Google Scholar 

  8. H.T. Chen, Interference theory of metamaterial perfect absorbers. Opt. Express 20, 7165–7172 (2012)

    Article  Google Scholar 

  9. J. Lee, S. Lim, Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance. Electron. Lett. 47, 8–9 (2012)

    Article  Google Scholar 

  10. J. Sun, L. Liu, G. Dong, J. Zhou, An extremely broad band metamaterial absorber based on destructive interference. Opt. Express 19, 21155–21162 (2011)

    Article  Google Scholar 

  11. L. Li, Y. Yang, C.H. Liang, A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. J. Appl. Phys. 110, 063702–063706 (2011)

    Article  Google Scholar 

  12. J.W. Park, P.V. Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, E.H. Choi, L.Y. Chen, Y. Lee, Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express 21, 9691–9702 (2013)

    Article  Google Scholar 

  13. B. Wang, T. Koschny, C.M. Soukoulis, Wide-angle and polarization-independent chiral metamaterial absorber. Phys. Rev. B 80, 033108 (2009)

    Article  Google Scholar 

  14. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, T. Jiang, Polarization insensitive metamaterial absorber with wide incident angle. Prog. Electromagn. Res. 101, 231–239 (2010)

    Article  Google Scholar 

  15. J. Lee, S. Lim, Bandwidth-enhanced and polarization- insensitive metamaterial absorber using double resonance. Electron. Lett. 47, 8–9 (2011)

    Article  Google Scholar 

  16. O.T. Gunduz, C. Sabah, Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application. J. Comp. Electronics (2015). doi:10.1007/s10825-015-0735-8

  17. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  Google Scholar 

  18. F. Dincer, O. Akgol, M. Karaaslan, E. Unal, C. Sabah, Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime. Prog. Electromagn. Res. 144, 93–101 (2014)

    Article  Google Scholar 

  19. B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, T. Jiang, Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. Opt. Express 18, 23196–23203 (2010)

    Article  Google Scholar 

  20. I.B. Shadrivov, A.B. Kozyrev, D.W. Weide, Y.S. Kivshar, Tunable transmission and harmonic generation in nonlinear metamaterials. Appl. Phys. Lett. 93, 161903 (2008)

    Article  Google Scholar 

  21. B. Zhu, Y.J. Feng, J.M. Zhao, C. Huang, T.A. Jiang, Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Appl. Phys. Lett. 97, 051906 (2010)

    Article  Google Scholar 

  22. Y.J. Yang, J.W. Yong, J.Z. Guang, J.P. Zhong, H.P. Sun, Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire. Chin. Phys. B 21, 038501–0358506 (2011)

    Article  Google Scholar 

  23. D. Shrekenhamer, W.C. Chen, W.J. Padilla, Liquid crystal tunable metamaterial absorber (Phys. Rev., Lett, 2013). 77403

    Google Scholar 

  24. B.X. Wang, L.L. Wang, G.Z. Wang, W.Q. Huang, X.F. Li, X. Zhai, Frequency continuous tunable terahertz metamaterial absorber. J. Lightw. Technol. 32, 1183–1189 (2014)

    Article  Google Scholar 

  25. Q.Y. Wen, H.W. Zhang, Q.H. Yang, Z. Chen, Y. Long, Y.L. Jing, Y. Lin, P.X. Zhang, A tunable hybrid metamaterial absorber based on vanadium oxide films. J. Phys. D Appl. Phys. 45, 235106 (2012)

    Article  Google Scholar 

  26. J. Zhao, Q. Cheng, J. Chen, M.Q. Qi, W.X. Jiang, T.J. Cui, A tunable metamaterial absorber using varactor diodes. New J. Phys. 15, 1–11 (2013)

    Google Scholar 

  27. M.L. Yola, N. Atar, Novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim. Acta 119, 24–31 (2014)

    Article  Google Scholar 

  28. M.L. Yola, T. Eren, N. Atar, A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta 125, 38–47 (2014)

    Article  Google Scholar 

  29. M.L. Yola, T. Eren, N. Atar, Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens. Bioelectron. 60, 277–285 (2014)

    Article  Google Scholar 

  30. M.L. Yola, V.K. Gupta, T. Eren, A.E. Şen, N. Atar, A novel electroanalytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta 120, 204–211 (2014)

    Article  Google Scholar 

  31. M.L. Yola, N. Atar, Z. Üstündağ, A.O. Solak, A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 698, 9–16 (2013)

    Article  Google Scholar 

  32. M.L. Yola, T. Eren, N. Atar, A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: Application to selective determination of tyrosine in milk. Sens. Actuators B Chem. 210, 149–157 (2015)

    Article  Google Scholar 

  33. N. Atar, T. Eren, M.L. Yola, H.K. Maleh, B. Demirdögen, Magnetic iron oxide and iron oxide@gold nanoparticles anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Adv. 5, 26402–26409 (2015)

    Article  Google Scholar 

  34. M.L. Yola, T. Eren, N. Atar, H. Saral, İ. Ermiş, Direct-methanol fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic nanoparticles: electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis 28–3, 570–579 (2016)

    Article  Google Scholar 

  35. E. Elçin, M.L. Yola, T. Eren, B. Girgin, N. Atar, Highly selective and sensitive voltammetric sensor based on ruthenium nanoparticle anchored calix[4]amidocrown-5 functionalized reduced graphene oxide: simultaneous determination of quercetin, morin and rutin in grape wine. Electroanalysis 28–3, 611–619 (2016)

    Article  Google Scholar 

  36. M.L. Yola, V.K. Gupta, N. Atar, New molecular imprinted voltammetric sensor for determination of ochratoxin A. Mater. Sci. Eng. C 61, 368–375 (2015)

    Article  Google Scholar 

  37. G. Kotan, F. Kardaş, Ö.A. Yokuş, O. Akyıldırım, H. Saral, T. Eren, M.L. Yola, N. Atar, A novel determination of curcumin via Ru@Au nanoparticle decorated nitrogen and sulfur-functionalized reduced graphene oxide nanomaterials. Anal. Methods 8, 401–408 (2016)

    Article  Google Scholar 

  38. N. Atar, M.L. Yola, T. Eren, Sensitive determination of citrinin based on molecular imprinted electrochemical sensor. Appl. Surf. Sci. 362, 315–322 (2016)

    Article  Google Scholar 

  39. B. Ertan, T. Eren, İ. Ermiş, H. Saral, N. Atar, M.L. Yola, Sensitive analysis of simazine based on platinum nanoparticles on polyoxometalate/multi-walled carbon nanotubes. J. Colloid Interface Sci. 470, 14–21 (2016)

    Article  Google Scholar 

  40. Ö.A. Yokuş, F. Kardaş, O. Akyildirim, M.L. Yola, Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens. Actuators B Chem. 233, 47–54 (2016)

    Article  Google Scholar 

  41. T. Wanghuang, W. Chen, Y. Huang, G. Wen, Analysis of metamaterial absorber in normal and oblique incidence by using interference theory. AIP Adv. 3, 102118 (2013)

    Article  Google Scholar 

  42. B. Badaruzzaman, Application of microwave sensors to potato products (The University of Manchester, Manchester, 2010)

    Google Scholar 

  43. G. Barbillon, Plasmonic nanostructures prepared by soft UV nanoimprint lithography and their application in biological sensing. Micromachines 3, 321–327 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sabah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakır, M., Karaaslan, M., Dincer, F. et al. Tunable perfect metamaterial absorber and sensor applications. J Mater Sci: Mater Electron 27, 12091–12099 (2016). https://doi.org/10.1007/s10854-016-5359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5359-7

Keywords

Navigation