Skip to main content

Advertisement

Log in

Tailoring antiferroelectricity with high energy-storage properties in Bi0.5Na0.5TiO3–BaTiO3 ceramics by modulating Bi/Na ratio

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Antiferroelectric materials form a potential candidate for ceramic-based high energy storage applications owing to their low loss and high energy density. Here, we demonstrate that the antiferroelectric phase with high energy-storage properties in 0.94Bi0.5+x Na0.5−x TiO3–0.06BaTiO3 (BNTx–BT) ceramics at room-temperature is modulated by tailoring compositions. Our results show that the metastable antiferroelectric phase at room-temperature modulated by the Bi/Na ratio with a high excess in Bi3+ and/or a deficiency in Na+, can be induced to the FE phase by applying electrical field, leading to double hysteresis. The high energy storage density W = 1.76 J/cm3 for x = 0.05 BNTx–BT ceramics by modulating Bi/Na ratio is obtained, suggesting a promising candidate lead-free energy-storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. MacDougall, R. Jow, J. Ennis, S. Yen, X. Yang, J. Ho, Pulse Power Capacitors, IEEE Power Modulator Conference (2008)

  2. A. Chauhan, S. Patel, R. Vaish, Mechanical confinement for improved energy storage in BNT–BT–KNN lead-free ceramic capacitors. AIP Adv. 4, 087106 (2014)

    Article  Google Scholar 

  3. Y. Diab, P. Venet, H. Gualous, G. Rojat, Power Electron. IEEE Trans. 24, 510 (2009)

    Article  Google Scholar 

  4. A.K. Yadav, C. Gautam, Dielectric behavior of perovskite glass ceramics. J. Mater. Sci.: Mater. Electron. 25, 5165–5187 (2014)

    Google Scholar 

  5. X. Hao, J. Zhai, L.B. Kong, Z. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 63, 1–57 (2014)

    Article  Google Scholar 

  6. H. Lee, J.R. Kim, M.J. Lanagan, S. Trolier-McKinstry, C.A. Randall, High-energy density dielectrics and capacitors for elevated temperatures: Ca(Zr, Ti)O3. J. Am. Ceram. Soc. 96(4), 1209–1213 (2013)

    Article  Google Scholar 

  7. Z. Hu, B. Ma, R.E. Koritala, U. Balachandran, Temperature-dependent energy storage properties of antiferroelectric Pb0.96La0.04Zr0.98Ti0.02O3 thin films. Appl. Phys. Lett. 104, 263902 (2014)

    Article  Google Scholar 

  8. T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98(2), 559–566 (2015)

    Article  Google Scholar 

  9. M.S. Mirshekarloo, K. Yao, T. Sritharan, Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films. Appl. Phys. Lett. 97, 142902 (2010)

    Article  Google Scholar 

  10. J. Parui, S.B. Krupanidhi, Enhancement of charge and energy storage in sol–gel derived pure and La-modified PbZrO3 thin films. Appl. Phys. Lett. 92, 192901 (2008)

    Article  Google Scholar 

  11. F. Zhuo, Y. Li, J. Gao, Q. Yan, Y. Zhang, X. Chu, W. Cao, Effect of A-site La3+ modified on dielectric and energy storage properties in lead zironate Stannate titanate ceramics. Mater. Res. Exp. 045501, 1–11 (2014)

    Google Scholar 

  12. X. Hao, Y. Wang, L. Zhang, L. Zhang, S. An, Composition-dependent dielectric and energy-storage properties of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thick films. Appl. Phys. Lett. 102, 163903 (2013)

    Article  Google Scholar 

  13. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35(6), 1659–1681 (2015)

    Article  Google Scholar 

  14. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Article  Google Scholar 

  15. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Kraink, New ferroelectrics of complex composition. Sov. Phys. Sol. State 2, 2651–2654 (1961)

    Google Scholar 

  16. V. Dorcet, G. Trolliard, P. Boullay, Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: first order rhombohedral to orthorhombic phase transition. Chem. Mater. 20(15), 5061–5073 (2008)

    Article  Google Scholar 

  17. V. Dorcet, G. Trolliard, P. Boullay, The structural origin of the antiferroelectric properties and relaxor behavior of Na0.5Bi0.5TiO3. J. Magn. Magn. Mater. 321(11), 1758–1761 (2009)

    Article  Google Scholar 

  18. B.W. Eerd, D. Damjanovic, N. Klein, N. Setter, J. Trodahl, Structural complexity of (Na0.5Bi0.5)TiO3–BaTiO3 as revealed by Raman spectroscopy. Phys. Rev. B 82, 104112 (2010)

    Article  Google Scholar 

  19. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, J. Rödel, On the phase indentity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol% BaTiO3. J. Appl. Phys. 110, 074106 (2011)

    Article  Google Scholar 

  20. C. Ma, H. Guo, X. Tan, New phase boundary in (Bi1/2Na1/2)TiO3–BaTiO3 revealed via a novel method of electron difrraction analysis. Adv. Funct. Mater. 23, 5261 (2013)

    Article  Google Scholar 

  21. R. Garg, B.N. Rao, A. Senyshyn, P.S.R. Krishna, R. Ranjan, Lead-free piezoelectric system (Na0.5Bi0.5)TiO3–BaTiO3: equilibrium structures and irreversible structural transformation driven by electric field and mechanical impact. Phys. Rev. B 88, 014103 (2013)

    Article  Google Scholar 

  22. G. Picht, J. Töpfer, E. Hennig, Structural properties of (Bi0.5Na0.5)1−x Ba x TiO3 lead-Free piezoelectric ceramics. J. Eur. Ceram. Soc. 30, 3445–3450 (2010)

    Article  Google Scholar 

  23. C. Ma, X. Tan, Phase diagram of unpoled lead-free (1−x)(Bi1/2Na1/2)TiO3− xBaTiO3 ceramics. Solid State Commun. 150(33–34), 1497–1500 (2010)

    Article  Google Scholar 

  24. Q. Xu, D.P. Huang, M. Chen, W. Chen, H.X. Liu, B.H. Kim, Effect of bismuth excess on ferroelectric and piezoelectric properties of a (Na0.5Bi0.5)TiO3–BaTiO3 composition near the morphotropic phase boundary. J. Alloys Compd. 471(1–2), 310–316 (2009)

    Article  Google Scholar 

  25. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, T.G. Park, D. Do, S.S. Kim, Effects of Na nonstoichiometry in (Bi0.5Na0.5+x )TiO3 ceramics. Appl. Phys. Lett. 96(2), 022901 (2010)

    Article  Google Scholar 

  26. Y. Guo, M. Gu, H. Luo, Y. Liu, R.L. Withers, Composition-induced antiferroelectric phase and giant strain in lead-free (Nay, Biz)Ti1−xO3(1−x)xBaTiO3 ceramics. Phys. Rev. B 83, 054118 (2011)

    Article  Google Scholar 

  27. C. Ma, X. Tan, In situ transmission electron microscopy study on the phase transitions in lead-free (1−x)(Bi1/2Na1/2)TiO3xBaTiO3 ceramics. J. Am. Ceram. Soc. 94(11), 4040–4044 (2011)

    Article  Google Scholar 

  28. S. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, High-strain lead-free antiferroelectric electrostrictors. Adv. Mater. 21(46), 4716–4720 (2009)

    Article  Google Scholar 

  29. H. Borkar, V.N. Singh, B.P. Sing, M. Tomar, V. Gupta, A. Kumar, Room temperature lead-Free relaxor-antiferroelectric electroceramics for energy storage application. RSC Adv. 4, 22840–22847 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work was financially supported by the National Nature Science Foundation of China (11564007, 61561015, and 61361007) and Guangxi Key Laboratory of Information Materials (1310001-Z) and the Natural Science Foundation of Guangxi (Grant Nos. 2012GXNSFGA60002 and 2015GXNSFAA139250).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changrong Zhou or Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhou, C., Xu, J. et al. Tailoring antiferroelectricity with high energy-storage properties in Bi0.5Na0.5TiO3–BaTiO3 ceramics by modulating Bi/Na ratio. J Mater Sci: Mater Electron 27, 10810–10815 (2016). https://doi.org/10.1007/s10854-016-5187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5187-9

Keywords

Navigation