Skip to main content
Log in

Structural, optical and electrical properties of PbS and PbSe quantum dot thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

PbS and PbSe were prepared by hot injection method. The powders were used for preparing the corresponding films by using thermal evaporation technique. The structural, optical and electrical properties of PbS and PbSe thin films were investigated. The structural properties of PbS and PbSe were investigated by X-ray diffraction, transmission electron microscopy and energy dispersive X-ray techniques (EDX). PbS and PbSe films were found to have cubic rock salt structure. The particles size ranged from 1.32 to 2.26 nm for PbS and 1.28–2.48 nm for PbSe. EDX results showed that PbS films have rich sulphur content, while PbSe films have rich lead content. The optical constants (absorption coefficient and the refractive index) of the films were determined in the wavelength range 200–2500 nm. The optical energy band gap of PbS and PbSe films was determined as 3.25 and 2.20 eV, respectively. The refractive index, the optical dielectric constant and the ratio of charge carriers concentration to its effective mass were determined. The electrical resistivity, charge carriers concentration and carriers mobility of PbS at room temperature were determined as 0.55 Ω cm, 1.7 × 1016 cm−3 and 656 cm2 V−1 s−1, respectively, and for PbSe films they were determined as 0.4 Ω cm, 9 × 1015 cm−3 and 1735 cm2 V−1 s−1, respectively. These electrical parameters were investigated as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.V. Patil, P.R. Deshmukh, C.D. Lokhande, Sens. Actuat. B 156, 450 (2011)

    Article  Google Scholar 

  2. A. Hmood, A. Kadhim, H. Abu Hassan, J. Alloy. Compd. 520, 1 (2012)

    Article  Google Scholar 

  3. S.A. Khan, Z.H. Khan, A.A. El-Sebaii, F.M. Al-Marzouki, A.A. Al-Ghamdi, Phys. B 405, 3384 (2010)

    Article  Google Scholar 

  4. S. Kumar, Z.H. Khan, M.A. Majeed, K.M. Husain, Curr. Appl. Phys. 5, 561 (2005)

    Article  Google Scholar 

  5. B. Pejova, I. Grozdanov, A. Tanusevski, Mater. Chem. Phys. 83, 245 (2004)

    Article  Google Scholar 

  6. S. Kumar, B. Lal, P. Aghamkar, M. Husain, J. Alloys Compd. 488, 334 (2009)

    Article  Google Scholar 

  7. O.K. Tan, W. Cao, Y. Hu, W. Zhu, Sol. State Ionics 172, 309 (2004)

    Article  Google Scholar 

  8. Y. Zhang, Z. Li, J. Ouyang, S.W. Tsang, J. Lu, K. Yu, J. Ding, Y. Tao, Org. Electron. 13, 2773 (2012)

    Article  Google Scholar 

  9. A.S. Obaid, M.A. Mahdi, Z. Hassan, M. Bououdina, Int. J. Hydrog. Energy 38, 807 (2012)

    Article  Google Scholar 

  10. H. Fan, T. Su, H. Li, Y. Zheng, S. Li, M. Hu, Y. Zhou, H. Ma, X. Jia, Sol. State Commun. 186, 8 (2014)

    Article  Google Scholar 

  11. E.A. Albanesi, E.L. Peltzer y Blanca, A.G. Petukhov, Comput. Mater. Sci. 32, 85 (2005)

    Article  Google Scholar 

  12. Y. Sun, X. Qian, J. Yin, J. Huang, X. Ma, Z. Zhu, J. Mater. Res. 16, 2922 (2001)

    Article  Google Scholar 

  13. P.J. Taylor, N.K. Dhar, E. Harris, V. Swaminathan, Y. Chen, W.A. Jesser, J. Electron. Mater. 39, 2343 (2009)

    Article  Google Scholar 

  14. J.D. Patel, F. Mighri et al., Mater. Sci. Appl. 3, 125 (2012)

    Google Scholar 

  15. X. Zhao, I. Gorelikov et al., J Langmuir 21, 1086 (2005)

    Article  Google Scholar 

  16. L.F. Koao, F.B. Dejene, H.C. Swart, Int. J. Electrochem. Sci. 9, 1747 (2014)

    Google Scholar 

  17. G.L. Koleilat, L. Levina et al., ACS Nano 2, 833 (2008)

    Article  Google Scholar 

  18. E. Lifshitz, M. Bashouti, V. Kloper, A. Kigel, M.S. Eisen, S. Berger, Nano Lett. 3, 857 (2003)

    Article  Google Scholar 

  19. K. Anusorn, T. Kevin, T. Kensuke, K. Masaru, V.K. Prashant, J. Am. Chem. Soc. 130, 4007 (2008)

    Article  Google Scholar 

  20. A.J. Nozik, Quantum dot solar cells. Physica E (Amsterdam) 14, 115 (2002)

    Article  Google Scholar 

  21. J. Yang, H.L. Elim, Q.B. Zhang, J.Y. Lee, W. Ji, J. Am. Chem. Soc. 128(1926), 11921 (2006)

    Article  Google Scholar 

  22. D.M. Ma, C. Cheng, J. Alloys Compd. 509, 6595 (2011)

    Article  Google Scholar 

  23. L. Weizhong, J. Alloy. Compd. 493, 358 (2010)

    Article  Google Scholar 

  24. R.T. Rumianowski, R.S. Dygdala, W. Jung, W. Bala, J. Cryst. Growth 252, 230 (2003)

    Article  Google Scholar 

  25. M.C. Torquemada, M.T. Rodrigo, G. Vergara, F.J. Sanchez, R. Almazan, M. Verdu, P. Rodriguez, V. Villamayor, L.J. Gomez, M.T. Montojo, A. Munoz, J. Appl. Phys. 93, 1778 (2003)

    Article  Google Scholar 

  26. W. Ren, W. Cao, S. Wang, M. Sui, H. Lu, J. Alloy. Compd. 509, 5947 (2011)

    Article  Google Scholar 

  27. S.A. Saleh, A. Al-Hajry, H.M. Ali, Phys. Scr. 84, 015604 (2011)

    Article  Google Scholar 

  28. A.Y. Ueta, G. Springhoiz, F. Schinagl, G. Marschner, G. Bauer, Thin Sol. Film. 306, 320 (1997)

    Article  Google Scholar 

  29. J. Dheepa, R. Sathyamoorthy, S. Velumani, A. Subbarayan, K. Natarajan, P.J. Sebastian, Sol. Energy Mater. Sol. Cells 81, 305 (2004)

    Article  Google Scholar 

  30. W.W. Yu, J.C. Falkner, B.S. Shih, V.L. Colvin, Chem. Mater. 16, 3318 (2004)

    Article  Google Scholar 

  31. X. Sun, K. Gao, X. Pang, H. Yang, A.A. Volinsky, Thin Sol. Film. 592, 59 (2015)

    Article  Google Scholar 

  32. E.I. Rogacheva, T.V. Tavriina, S.N. Grigorov, O.N. Nashchekina, V.V. Volobuev, A.G. Fedorov, K.A. Nasedkin, M.S. Dresseelhaus, J. Electron. Mater. 4, 298 (2003)

    Google Scholar 

  33. S. Kumar, B. Lal, S. Rohilla, P. Aghamkar, M. Husain, J. Alloy. Compd. 505, 334 (2010)

    Article  Google Scholar 

  34. A. Begum, A. Hussain, A. Rahman, Beilstein J. Nanotechnol. 3, 438 (2012)

    Article  Google Scholar 

  35. T.S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1979)

    Google Scholar 

  36. A. Zolanvari, H. Sadeghi, R. Norouzi, Chin. Phys. Lett. 30, 096201 (2013)

    Article  Google Scholar 

  37. P.O. Edward, Hand Book of Optical Constants of Solids (Academic press, New York, 1985), p. 265

    Google Scholar 

  38. Z.Q. Mamiyev, N.O. Balayeva, Optical Mater. 46, 522 (2015)

    Article  Google Scholar 

  39. W. Feng, H. Zhou, F. Chen, Vacuum 114, 82 (2015)

    Article  Google Scholar 

  40. N. Benramdane, W.A. Murad, R.H. Misho, M. Ziane, Z. Kebbbab, Mater. Chem. Phys. 48, 119 (1997)

    Article  Google Scholar 

  41. H. Moreno-Garcia, M.T.S. Nair, P.K. Nair, Thin Sol. Film. 519, 2287 (2001)

    Article  Google Scholar 

  42. I.E. Morales-Fernandez, M.I. Medina-Montes, L.A. Gonzalez, B. Gnade, M.A. Quevedo-Lopez, R. Ramirez-Bon, Thin Sol. Film. 519, 512 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. El-Menyawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Menyawy, E.M., Mahmoud, G.M., Ibrahim, R.S. et al. Structural, optical and electrical properties of PbS and PbSe quantum dot thin films. J Mater Sci: Mater Electron 27, 10070–10077 (2016). https://doi.org/10.1007/s10854-016-5080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5080-6

Keywords

Navigation