Skip to main content
Log in

Influence of B2O3 addition on the electrical and microstructure properties of Ni0.5Co0.5CuxMn2−xO4 (0 ≤ x ≤ 0.3) NTC thermistors without calcination

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrical and microstructural properties of negative temperature coefficient (NTC) thermistors Ni0.5Co0.5CuxMn2−xO4 (0 ≤ x ≤ 0.3) have been investigated with B2O3 addition. The samples were prepared by conventional ceramic processing techniques. The B2O3-free samples were calcinated at 900 °C for 2 h and then were sintered at 1100 °C for 5 h. The B2O3-added samples were sintered at 900 and 1100 °C for 5 h without applying calcination. The cubic spinel phase was identified in all samples by the X-ray diffraction analysis. The addition of B2O3 and CuO play an important role by increasing the bulk density, improving the microstructure properties and enhancing the electrical characteristics of NTC thermistors even without calcination. The values of electrical resistivity at 25 °C, material constant (B25/85) and activation energy (Ea) of all samples were in the range of 28–6903 Ω cm, 3085–3797 K and 0.266–0.327 eV, respectively. This means that the electrical properties of NTC thermistors can be controlled to a wide range of values to meet various requirements by the addition of B2O3 and CuO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Ma, Y. Liu, Y. Lu, H. Qian, J. Alloys Compd. 650, 931–935 (2015)

    Article  Google Scholar 

  2. C. Ma, Y. Liu, Y. Lu, J. Mater. Sci. Mater. Electron. 26, 7238–7243 (2015)

    Article  Google Scholar 

  3. R.N. Jadhav, V. Puri, J. Alloys Compd. 507, 151–156 (2010)

    Article  Google Scholar 

  4. G.D.C.C. de Györgyfalva, I.M. Reaney, J. Eur. Ceram. Soc. 21, 2145–2148 (2001)

    Article  Google Scholar 

  5. K. Park, J.K. Lee, J. Alloys Compd. 475, 513–517 (2009)

    Article  Google Scholar 

  6. D.F. Li, S.X. Zhao, K. Xiong, H.Q. Bao, C.W. Nan, J. Alloys Compd. 582, 283–288 (2014)

    Article  Google Scholar 

  7. S.A. Kanade, V. Puri, Mater. Lett. 60, 1428–1431 (2006)

    Article  Google Scholar 

  8. T. Yokoyama, T. Meguro, M. Nakamura, J. Tatami, T. Wakihara, K. Komeya, J. Ceram. Process. Res. 10, 683–688 (2009)

    Google Scholar 

  9. M. Vakiv, O. Shpotyuk, O. Mrooz, I. Hadzaman, J. Eur. Ceram. Soc. 21, 1783–1785 (2001)

    Article  Google Scholar 

  10. K. Park, J.K. Lee, Scr. Mater. 57, 329–332 (2007)

    Article  Google Scholar 

  11. K. Xiong, S.X. Zhao, D.F. Li, H.Q. Bao, C.W. Nan, J. Alloys Compd. 606, 273–277 (2014)

    Article  Google Scholar 

  12. O.S. Aleksic, M.V. Nikolic, M.D. Lukovic, N. Nikolic, B.M. Radojcic, M. Radovanovic, Z. Djuric, M. Mitric, P.M. Nikolic, Mater. Sci. Eng. B 178, 202–210 (2013)

    Article  Google Scholar 

  13. L. Wang, C. Mao, G. Wang, G. Du, R. Liang, X. Dong, J. Am. Ceram. Soc. 96, 24–27 (2013)

    Article  Google Scholar 

  14. J. Wang, J. Zhang, J. Mater. Res. 27, 928–931 (2012)

    Google Scholar 

  15. W. Kong, L. Chen, B. Gao, B. Zhang, P. Zhao, G. Ji, A. Chang, C. Jiang, Ceram. Int. 40, 8405–8409 (2014)

    Article  Google Scholar 

  16. K. Park, J.K. Lee, S.J. Kim, W.S. Seo, W.S. Cho, C.W. Lee, S. Nahm, J. Alloys Compd. 467, 310–316 (2009)

    Article  Google Scholar 

  17. S. Liang, J. Yang, X. Yi, X. Zhang, Y. Bai, Ceram. Int. 37, 2537–2541 (2011)

    Article  Google Scholar 

  18. B. Yuksel, S. Kirtay, T.O. Ozkan, E. Acikalin, H. Erkalfa, J. Magn. Magn. Mater. 320, 714–718 (2008)

    Article  Google Scholar 

  19. B. Yuksel, T.O. Ozkan, Mater. Sci. Pol. 33, 220–229 (2015)

    Article  Google Scholar 

  20. W.W. Cho, K. Kakimoto, H. Ohsato, Mater. Sci. Eng. B 121, 48–53 (2005)

    Article  Google Scholar 

  21. H. Takao, Y. Saito, Y. Aoki, K. Horibuchi, J. Am. Ceram. Soc. 89, 1951–1956 (2006)

    Article  Google Scholar 

  22. E. Rezlescu, L. Sachelarie, P.D. Popa, N. Rezlescu, IEEE Trans. Magn. 36, 3962–3967 (2000)

    Article  Google Scholar 

  23. J. Li, W. Songping, D. Xiaohong, N. Jing, J. Mater. Sci. Mater. Electron. 20, 1186–1192 (2009)

    Article  Google Scholar 

  24. H. Wang, X. Zhai, J. Xu, C. Yuan, C. Zhou, J. Mater. Sci. Mater. Electron. 24, 2469–2472 (2013)

    Article  Google Scholar 

  25. R.N. Jadhav, S.N. Mathad, V. Puri, Phys. Scr. 87, 065801 (2013)

    Article  Google Scholar 

  26. M.N. Muralidharan, P.R. Rohini, E.K. Sunny, K.R. Dayas, A. Seema, Ceram. Int. 38, 6481–6486 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by TÜBİTAK (The Scientific and Technical Research Council of Turkey), Project No. 114M860. We would like to thank TÜBİTAK for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berat Yüksel Price.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yüksel Price, B., Hardal, G. Influence of B2O3 addition on the electrical and microstructure properties of Ni0.5Co0.5CuxMn2−xO4 (0 ≤ x ≤ 0.3) NTC thermistors without calcination. J Mater Sci: Mater Electron 27, 9226–9232 (2016). https://doi.org/10.1007/s10854-016-4960-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4960-0

Keywords

Navigation