Skip to main content
Log in

Robust insulating La and Ti co-doped BiFeO3 multiferroic ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low resistivity and high dielectric loss are two major problems associated with the fabrications of BiFeO3 multiferroic ceramics. Adapting co-doping on the A- and B-sites, robust insulating Bi0.98La0.02Fe0.99Ti0.01O3 ceramics with resistivity ~1011 Ω m measured applying electric field 90 kV/cm and dielectric loss tanδ below 0.02 over frequency range of 100 Hz–2 MHz were prepared using a refined solid state reaction electroceramic processing. Intentional La/Ti co-substitution was experimentally illustrated to form ternary solid solution, which enhances thermodynamic stability of BiFeO3 perovskite phase, allowing obtain high resistive low dielectric loss bismuth ferrite ceramics. Meanwhile, passive unknown impure ions from Bi2O3 and TiO2 raw oxides were also found combining synergetic effect available to obtain low dielectric loss ceramics. In contrast to the traditional method introducing vacancies via doping heterovalent ions, various kinds of vacancies were introduced in advance into the ceramic samples through controlling chemical stoichiometry via employing impure raw materials, and they are experimentally demonstrated responsible for dielectric loss relaxation behaviors and high dielectric loss observed in the Bi0.98La0.02Fe0.99Ti0.01O3 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Yu, J.H. Chu, Progress and prospect for high temperature single phase magnetic ferroelectrics. Chin. Sci. Bull. 53, 2097–2112 (2008)

    Google Scholar 

  2. M. Bibes, A. Barthélémy, Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008)

    Article  Google Scholar 

  3. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  4. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006)

    Article  Google Scholar 

  5. C. Tabares-Munoz, J.P. Rivera, A. Bezinges, A. Monnier, H. Schmid, Measurement of the quadratic magnetoelectric effect on single crystalline bismuth ferrate (BiFeO3). Jpn. J. Appl. Phys. 24, 1051–1053 (1985)

    Article  Google Scholar 

  6. G.A. Smolenskii, V.A. Bokov, Coexistence of magnetic and electric ordering in crystals. J. Appl. Phys. 35, 915–917 (1964)

    Article  Google Scholar 

  7. D. Lebeugle, D. Colson, A. Forget, M. Viret, Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 91, 022907 (2007)

    Article  Google Scholar 

  8. D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J.F. Marucco, S. Fusil, Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 76, 024116 (2007)

    Article  Google Scholar 

  9. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)

    Article  Google Scholar 

  10. A. Perejón, N. Masó, A.R. West, P.E. Sánchez-Jiménez, R. Poyato, J.M. Criado, L.A. Pérez-Maqueda, Electrical properties of stoichiometric BiFeO3 prepared by mechanosynthesis with either conventional or spark plasma sintering. J. Am. Ceram. Soc. 96, 1220–1227 (2013)

    Article  Google Scholar 

  11. G.D. Achenbach, W.J. James, R. Gerson, Preparation of single-phase polycrystalline BiFeO3. J. Am. Ceram. Soc. 50, 437 (1967)

    Article  Google Scholar 

  12. O.D. Shestova, O.S. Didkovskaya, Decrease in the electric conductivity of bismuth orthoferrite. Neorg. Mater. 19, 1016–1018 (1983)

    Google Scholar 

  13. T. Ito, T. Ushiyama, Y. Yanagisawa, R. Kumai, Y. Tomioka, Growth of highly insulating bulk single crystals of multiferroic BiFeO3 and their inherent internal strains in the domain-switching process. Cryst. Growth Des. 11, 5139–5143 (2011)

    Article  Google Scholar 

  14. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  Google Scholar 

  15. W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307, 1203 (2005)

    Article  Google Scholar 

  16. J. Wang, A. Scholl, H. Zheng, S.B. Ogale, D. Viehland, D.G. Schlom, N.A. Spaldin, K.M. Rabe, M. Wuttig, L. Mohaddes, J. Neaton, U. Waghmare, T. Zhao, R. Ramesh, Response to comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307, 1203 (2005)

    Article  Google Scholar 

  17. G.W. Pabst, L.W. Martin, Y.H. Chu, R. Ramesh, Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. 90, 072902 (2007)

    Article  Google Scholar 

  18. H. Bea, M. Bibes, A. Barthelemy, K. Bouzehouane, E. Jacquet, A. Khodan, J.-P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, M. Viret, Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl. Phys. Lett. 87, 072508 (2005)

    Article  Google Scholar 

  19. C.C. Lee, J.M. Wu, Studies on leakage mechanisms and electrical properties of doped BiFeO3 films. Electrochem. Solid-State Lett. 10, G58–G61 (2007)

    Article  Google Scholar 

  20. G.L. Yuan, S.W. Or, Y.P. Wang, Z.G. Liu, J.M. Liu, Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid State Commun. 138, 76–81 (2006)

    Article  Google Scholar 

  21. X.D. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)

    Article  Google Scholar 

  22. K. Abe, N. Sakai, J. Takahashi, H. Itoh, N. Adachi, T. Ota, Leakage current properties of cation-substituted BiFeO3 ceramics. Jpn. J. Appl. Phys. 49, 09MB01 (2010)

    Google Scholar 

  23. T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J. Appl. Phys. 108, 074107 (2010)

    Article  Google Scholar 

  24. J.L. Mukherjee, F.F.Y. Wang, Kinetics of solid-state reaction of Bi2O3 and Fe2O3. J. Am. Ceram. Soc. 54, 31–34 (1971)

    Article  Google Scholar 

  25. S.M. Selbach, M.A. Einarsrud, T. Grande, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169–173 (2009)

    Article  Google Scholar 

  26. M. Valant, A.K. Axelsson, N. Alford, Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem. Mater. 19, 5431–5436 (2007)

    Article  Google Scholar 

  27. J.G. Wu, J. Wang, Ferroelectric and impedance behavior of La- and Ti-codoping BiFeO3 thin films. J. Am. Ceram. Soc. 93, 2795–2803 (2010)

    Article  Google Scholar 

  28. X.B. Hou, J. Yu, Perovskite-structured BiFeO3–Bi(Zn1/2Ti1/2)O3–PbTiO3 solid solution piezoelectric ceramics with Curie temperature about 700 °C. J. Am. Ceram. Soc. 96, 2218–2224 (2013)

    Article  Google Scholar 

  29. L.L. Zhang, X.B. Hou, J. Yu, Ferroelectric and piezoelectric properties of high temperature (Bi, La)FeO3–Bi(Zn1/2Ti1/2)O3–PbTiO3 ceramics at rhombohedral/tetragonal coexistent phase. Jpn. J. Appl. Phys. 54, 081501 (2015)

    Article  Google Scholar 

  30. L.L. Zhang, J. Yu, M. Itoh, Structural phase transitions of robust insulating Bi1−xLaxFe1−yTiyO3 multiferroics. J. Appl. Phys. 115, 123523 (2014)

    Article  Google Scholar 

  31. L.L. Zhang, J. Yu, Residual tensile stress in robust insulating rhombohedral Bi1−xLaxFe1−yTiyO3 multiferroic ceramics and its ability to pin ferroelectric polarization switching. Appl. Phys. Lett. 106, 112907 (2015)

    Article  Google Scholar 

  32. Y. Lin, L.L. Zhang, J. Yu, Piezoelectric and ferroelectric property in Mn-doped 0.69BiFeO3–0.04Bi(Zn1/2Ti1/2)O3–0.27BaTiO3 lead-free piezoceramics. J. Mater. Sci.: Mater. Electron. 27, 1955–1965 (2016)

    Google Scholar 

  33. N.G. Eror, U. Balachandran, Self-compensation in lanthanum-doped strontium titanate. J. Solid Stat. Chem. 40, 85–91 (1981)

    Article  Google Scholar 

  34. Z.Y. Shen, Q.G. Hu, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Z.X. Xie, R.H. Liao, Structure and energy storage properties of Ti vacancies charge compensated Re2O3-doped SrTiO3 (Re = Pr, Nd, Gd) ceramics. J. Mater. Sci. Mater. Electron. 24, 3089–3094 (2013)

    Article  Google Scholar 

  35. D.W. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edn. (Wiley, New York, 1976), pp. 131–139

    Google Scholar 

  36. Y. Yoneda, K. Yoshii, H. Saitoh, J. Mizuki, Magnetic and ferroelectric properties of (Bi1−xLax)FeO3. Ferroelectrics 348, 33–37 (2007)

    Article  Google Scholar 

  37. F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite bismuth iron oxide (BiFeO3). Acta Crystallogr. B46, 698–702 (1990)

    Article  Google Scholar 

  38. R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, β phase and γ-βmetal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77, 014110 (2008)

    Article  Google Scholar 

  39. X.D. Qi, P.C. Tsai, Y.C. Chen, Q.R. Lin, J.C.A. Huang, W.C. Chang, I.G. Chen, Optimal growth windows of multiferroic BiFeO3 films and characteristics of ferroelectric domain structures. Thin Solid Films 517, 5862–5866 (2009)

    Article  Google Scholar 

  40. P. S. Prevéy, X-ray diffraction residual stress techniques. in Metals Handbook, 9th edn. (American Society for Metals, 1986), pp. 380–392

  41. I.C. Noyan, J.B. Cohen, Residual Stress Measurement by Diffraction and Interpretation (Springer, New York, 1987)

    Google Scholar 

  42. D.W. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edn. (Wiley, New York, 1976), pp. 937–945

    Google Scholar 

  43. C. Elissalde, J. Ravez, Ferroelectric ceramics: defects and dielectric relaxations. J. Mater. Chem. 11, 1957–1967 (2001)

    Article  Google Scholar 

  44. J.F. Ihlefeld, N.J. Podraza, Z.K. Liu, R.C. Rai, X. Xu, T. Heeg, Y.B. Chen, J. Li, R.W. Collins, J.L. Musfeldt, X.Q. Pan, J. Schubert, R. Ramesh, D.G. Schlom, Optical band gap of BiFeO3 grown by molecular-beam epitaxy. Appl. Phys. Lett. 92, 142908 (2008)

    Article  Google Scholar 

  45. A. Kumar, R.C. Rai, N.J. Podraza, S. Denev, M. Ramirez, Y.-H. Chu, L.W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D.G. Schlom, J. Orenstein, R. Ramesh, R.W. Collins, J.L. Musfeldt, V. Gopalan, Linear and nonlinear optical properties of BiFeO3. Appl. Phys. Lett. 92, 121915 (2008)

    Article  Google Scholar 

  46. S.J. Clark, J. Robertson, Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl. Phys. Lett. 90, 132903 (2007)

    Article  Google Scholar 

  47. G.L. Yuan, K.Z. Baba-Kishi, J.M. Liu, S.W. Or, Y.P. Wang, Z.G. Liu, Multiferroic properties of single-phase Bi0.85La0.15FeO3 lead-free ceramics. J. Am. Ceram. Soc. 89, 3136–3139 (2006)

    Article  Google Scholar 

  48. J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th edn. (HarperCollins, New York, 1993)

    Google Scholar 

  49. W. Kaczmarek, M. Polomska, Z. Pajak, Phase diagram of (Bi1−xLax)FeO3 solid solution. Phys. Lett. 47A, 227–228 (1974)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. B. Yang for I-V electrical measurements and Prof. Dr. J. Du for magnetic measurements. This work was partially supported by FANEDD-200744, NCET-07-0624, Shanghai Eastern Scholarship Program and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yu, J. Robust insulating La and Ti co-doped BiFeO3 multiferroic ceramics. J Mater Sci: Mater Electron 27, 8725–8733 (2016). https://doi.org/10.1007/s10854-016-4895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4895-5

Keywords

Navigation