Skip to main content
Log in

Photoelectrochemical determination of Pb2+ ions by using TiO2 nanorod arrays grown on FTO substrates via a facile two-stage hydrothermal route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aligned TiO2 nanorod arrays (NRAs) were fabricated on TiCl4 pretreated fluorine doped tin oxide (SnO2:F, FTO) substrates by a facile hydrothermal route. The effects of TiCl4 concentration (20, 40 and 60 mM) and post-growth treatments were investigated on the PEC performance of TiO2 NRAs. The optimal PEC performance, owning a low Pb2+ detection limit of ~2 nM, was achieved in the TiO2 NRAs which was pretreated with 20 mM TiCl4 and sintered after growth. It implied that the modification of FTO substrates with a low TiCl4 concentration was critical for achieving the ideal morphology and performance of TiO2 NRAs which reached a balance of light harvesting, carrier transport and ion diffusion. Additionally, it was also worth mentioning that the TiCl4 post-treatment wasn’t beneficial to improve the PEC performance of the compact TiO2 NRAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.A. Chavan, H. Li, A. Scarpellini, S. Marras, L. Manna, A. Athanassiou, D. Fragouli, ACS Appl. Mater. Interfaces 7, 14778 (2015)

    Article  Google Scholar 

  2. Y. Maeda, Y. Morinaga, Y. Tomita, K. Kobayashi, Electrochim. Acta 54, 1757 (2009)

    Article  Google Scholar 

  3. X. Zhang, K. Huo, X. Peng, R. Xu, P. Li, R. Chen, G. Zheng, Z. Wu, P.K. Chu, Chem. Commun. 49, 7091 (2013)

    Article  Google Scholar 

  4. R. Wang, X. Pang, H. Zhang, P. Gao, B. Du, H. Ma, Q. Wei, Anal. Methods 7, 5406 (2015)

    Article  Google Scholar 

  5. G. Wen, X. Wen, M.M.F. Choi, S. Shuang, Sens. Actuators B Chem. 221, 1449 (2015)

    Article  Google Scholar 

  6. S. Tang, P. Tong, W. Lu, J. Chen, Z. Yan, L. Zhang, Biosens. Bioelectron. 59, 1 (2014)

    Article  Google Scholar 

  7. M. Zhao, B. Cai, Y. Ma, H. Cai, J. Huang, X. Pan, H. He, Z. Ye, Biosens. Bioelectron. 61, 443 (2014)

    Article  Google Scholar 

  8. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  Google Scholar 

  9. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  10. N. Ibrahim, S.K. Kamarudin, L.J. Minggu, J. Power Sources 259, 33 (2014)

    Article  Google Scholar 

  11. F.X. Xiao, ACS Appl. Mater. Interfaces 4, 7055 (2012)

    Article  Google Scholar 

  12. Y. Luo, C. Dong, X. Li, Y. Tian, J. Electroanal. Chem. 759, 51 (2015)

    Article  Google Scholar 

  13. J. Li, N. Wu, Catal. Sci. Technol. 5, 1360 (2015)

    Article  Google Scholar 

  14. H. Zhang, G. Chen, D.W. Bahnemann, J. Mater. Chem. 19, 5089 (2009)

    Article  Google Scholar 

  15. J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Chem. Soc. Rev. 43, 6920 (2014)

    Article  Google Scholar 

  16. J.R. Jenning, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, J. Am. Chem. Soc. 130, 13364 (2008)

    Article  Google Scholar 

  17. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2008)

    Article  Google Scholar 

  18. X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008)

    Article  Google Scholar 

  19. M. Lv, D. Zheng, M. Ye, J. Xiao, W. Guo, Y. Lai, L. Sun, C. Lin, J. Zuo, Energy Environ. Sci. 6, 1615 (2013)

    Article  Google Scholar 

  20. S. Hoang, S. Guo, N.T. Hahn, A.J. Bard, C.B. Mullins, Nano Lett. 12, 26 (2012)

    Article  Google Scholar 

  21. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11, 3026 (2011)

    Article  Google Scholar 

  22. Y. Lai, H. Zhuang, K. Xie, D. Gong, Y. Tang, L. Sun, C. Lin, Z. Chen, N. J. Chem. 34, 1335 (2010)

    Article  Google Scholar 

  23. Y.L. Zhao, X.Q. Gu, Y.H. Qiang, Thin Solid Film 520, 2814 (2012)

    Article  Google Scholar 

  24. S. Zhang, X.Q. Gu, Y.L. Zhao, Y.H. Qiang, J. Electron. Mater. 45, 648 (2015)

    Article  Google Scholar 

  25. S.A. Berhe, S. Nag, Z. Molinets, W.J. Youngblood, ACS Appl. Mater. Interfaces 5, 1181 (2013)

    Article  Google Scholar 

  26. A. Yella, L.P. Heiniger, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nano Lett. 14, 2591 (2014)

    Article  Google Scholar 

  27. J.H. Bang, P.V. Kamat, Adv. Funct. Mater. 20, 1970 (2010)

    Article  Google Scholar 

  28. Z. Jin, Y. Wang, S. Chen, G. Li, L. Wang, H. Zhu, X. Zhang, Y. Liu, RSC Adv. 6, 10450 (2016)

    Article  Google Scholar 

  29. X.Q. Gu, Y.L. Zhao, Y.H. Qiang, J. Mater. Sci. Mater. Electron. 23, 1373 (2012)

    Article  Google Scholar 

  30. J. Song, G.R. Li, K. Xi, B. Lei, X.P. Gao, R.V. Kumar, J. Mater. Chem. A 2, 10041 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Fundamental Research Funds for the Central Universities (2015XKZD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuquan Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Gu, X., Zhao, Y. et al. Photoelectrochemical determination of Pb2+ ions by using TiO2 nanorod arrays grown on FTO substrates via a facile two-stage hydrothermal route. J Mater Sci: Mater Electron 27, 8455–8463 (2016). https://doi.org/10.1007/s10854-016-4860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4860-3

Keywords

Navigation