Skip to main content
Log in

The growth, enhanced optical and magnetic response of BiFeO3 nanorods synthesized by hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the growth process, optical and magnetic properties of BiFeO3 (BFO, short for BiFeO3) nanorods synthesized by a hydrothermal approach. The nanorods have a pseudo-cubic rhombohedral perovskite structure and the calculated crystallite size (D XRD) is about 75 nm according to the Scherrer formula. A typical magnetic hysteresis loop was observed at room temperature, indicating that the BiFeO3 nanorods show a ferromagnetic order. The remnant magnetization (2M r) and coercive field (2H C) are 0.012 emu/g and 705 Oe, respectively. Optical properties display that the absorption edge is 490 nm and the band gap is 2.53 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.S. Ali, W.J. Li, K. Javed, D.W. Shi, S. Riaz, G.J. Zhai, X.F. Han, Nanotechnology 27, 045708 (2016)

    Article  Google Scholar 

  2. Y. Lei, H.Z. Zeng, W.B. Luo, Y. Shuai, X.H. Wei, N. Du, D. Bürger, I. Skorupa, J.S. Liu, O.G. Schmidt, W. Zhang, H. Schmidt, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-4784-y

  3. K. Prashanthi, P. Dhandharia, N. Miriyala, R. Gaikwad, D. Barlage, T. Thundat, Nano Energy 13, 240–248 (2015)

    Article  Google Scholar 

  4. K. Chybczyńska, E. Markiewicz, M. Błaszyk, B. Hilczer, B. Andrzejewski, J. Alloys Compd. 671, 493 (2016)

    Article  Google Scholar 

  5. B. Rabaya, K. Das, K. Prashant, K.S. Narayan, A.K. Raychaudhuri, Opt. Express 22, 4944–4952 (2014)

    Article  Google Scholar 

  6. P. Raksa, S. Pinitsoontorn, S. Maensiri, Ferroelectrics 492, 150 (2016)

    Article  Google Scholar 

  7. R. Das, S. Sharma, K. Mandal, J. Magn. Magn. Mater. 401, 129 (2016)

    Article  Google Scholar 

  8. K. Prashanthi, T. Thundat, Scanning 36, 224–230 (2014)

    Google Scholar 

  9. Y. Sujian, L. Chang, L. Huiqing, Y. Xiaolei, L. Shasha, L. Wei, G. Shishang, Z. Xingzhong, Mater. Lett. 130, 157–159 (2014)

    Article  Google Scholar 

  10. K. Prashanthi, R. Gaikwad, T. Thundat, Nanotechnology 24, 505710 (2013)

    Article  Google Scholar 

  11. B. Kundys, M. Viret, D. Colson, Nat. Mater. 9, 803–805 (2010)

    Article  Google Scholar 

  12. S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.H. Chu, C.H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager, R. Ramesh, Appl. Phys. Lett. 95, 062909 (2009)

    Article  Google Scholar 

  13. K. Ahadi, S.M. Mahdavi, A. Nemati, M. Kianinia, J. Mater. Sci. 22, 815–820 (2010)

    Google Scholar 

  14. T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.W. Cheong, Science 324, 63–66 (2009)

    Article  Google Scholar 

  15. T. Stevenson, T.P. Comyn, A. Daoud-Aladine, A.J. Bell, J. Magn. Magn. Mater. 32, L64–L67 (2010)

    Article  Google Scholar 

  16. S. Kazhugasalamoorthy, P. Jegatheesan, R. Mohandoss, N.V. Giridharan, B. Karthikeyan, R.J. Joseyphus, S. Dhanuskodi, J. Alloys Compd. 493, 569–572 (2010)

    Article  Google Scholar 

  17. A. Gajovic, S. Šturm, B. Janwar, A. Šantic, K. Zagar, M. Cehz, J. Am. Ceram. Soc. 93, 3173–3179 (2010)

    Article  Google Scholar 

  18. W. Ji, K. Yao, Y.C. Liang, Adv. Mater. 22, 1763–1766 (2010)

    Article  Google Scholar 

  19. R. Das, G. G. Khan, K. Mandal, EPJ Web of Conferences, vol. 40, (2013), p. 15015

  20. G.S. Lotey, N.K. Verma, Chem. Phys. Lett. 579, 78–84 (2013)

    Article  Google Scholar 

  21. R. Das, K. Mandal, J. Magn, J. Magn. Magn. Mater. 324, 1913–1918 (2012)

    Article  Google Scholar 

  22. A. Kumar, J.F. Scott, R.S. Katiyar, Appl. Phys. Lett. 99, 062504 (2011)

    Article  Google Scholar 

  23. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Solid State Commun. 152, 525–529 (2012)

    Article  Google Scholar 

  24. J.P. Zhou, R.J. Xiao, Y.X. Zhang, Z.H. Shi, G.Q. Zhu, J. Mater. Chem. C 3, 6924–6931 (2015)

    Article  Google Scholar 

  25. D.P. Dutta, O.D. Jayakumar, A.K. Tyagi, K.G. Girija, C.G.S. Pillai, Nanoscale 2, 1149–1154 (2010)

    Article  Google Scholar 

  26. S. Basu, M. Pal, D. Chakravorty, J. Magn. Magn. Mater. 320, 3361–3365 (2008)

    Article  Google Scholar 

  27. M.A. Butler, J. Appl. Phys. 48, 1914–1920 (1977)

    Article  Google Scholar 

  28. A. Anshul, H. Borkar, P. Singh, P. Pal, S.S. Kushvaha, A. Kumar, Appl. Phys. Lett. 104, 132910 (2014)

    Article  Google Scholar 

  29. K. Prashanthi, G. Thakur, T. Thundat, Surf. Sci. Lett. 606, L83–L86 (2012)

    Article  Google Scholar 

  30. A. Anshul, A. Kumar, B.K. Gupta, R.K. Kotnala, J.F. Scott, R.S. Katiyar, Appl. Phys. Lett. 102, 222901 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant Nos. 51102288, 51402031, 61404018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Sun, F., Hao, J. et al. The growth, enhanced optical and magnetic response of BiFeO3 nanorods synthesized by hydrothermal method. J Mater Sci: Mater Electron 27, 8242–8246 (2016). https://doi.org/10.1007/s10854-016-4830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4830-9

Keywords

Navigation