Skip to main content
Log in

Low-temperature sintering of metallacyclic stabilized copper nanoparticles and adhesion enhancement of conductive copper film to a polyimide substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report that both low electric resistivity and strong adhesion to polyimide film were attained for a conductive Cu film prepared by low-temperature sintering of 2-amino-1-butanol-protected Cu nanoparticles (AB-Cu NPs) with an average size of 4.4 nm. The sintering temperature of 60 °C for the AB-Cu NPs is the lowest ever reported for Cu NPs. A nanoink comprising these AB-Cu NPs (~35 wt% Cu) produced a conductive Cu film with resistivity of 52 μΩ cm after heating at 150 °C under a nitrogen flow. The adhesion to a polyimide film was compared for films prepared from nanoinks consisting of three different types of alkanol-amine-based Cu NPs: AB-Cu NPs, 1-amino-2-propanol-Cu NPs, and 3-amino-1-propanol-Cu NPs. Only the Cu film prepared from the AB-Cu nanoink established strong adhesion to the substrate without decreasing the electrical conductivity. The adhesiveness is attributed to residual oxidation products after thermal sintering of the Cu nanoinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Magdassi, M. Grouchko, A. Kamyshny, Materials 3, 4626 (2010)

    Article  Google Scholar 

  2. K. Tanabe, Mater. Lett. 61, 4573 (2007)

    Article  Google Scholar 

  3. Y. Isomura, T. Narushima, H. Kawasaki, T. Yonezawa, Y. Obora, Chem. Commun. 48, 3784 (2012)

    Article  Google Scholar 

  4. J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A. Rahuman, Mater. Lett. 71, 114 (2012)

    Article  Google Scholar 

  5. V. Abhinav, V.K.R. Rama, K.P. Selvam, S.P. Singh, RSC Adv. 5, 63985 (2015)

    Article  Google Scholar 

  6. C.Y. Lai, C.F. Cheong, J.S. Mandeep, H.B. Abdullah, N. Amin, K.W. Lai, J. Mater. Eng. Perform. 23, 3541 (2014)

    Article  Google Scholar 

  7. Y. Jo, S.J. Oh, S.S. Lee, Y.H. Seo, B.H. Ryu, J. Moon, Y. Choi, S. Jeong, J. Mater. Chem. C 2, 9746 (2014)

    Article  Google Scholar 

  8. M. Hauder, J. Gstöttner, W. Hansch, D. Schmitt-Landsiedel, Appl. Phys. Lett. 78, 838 (2001)

    Article  Google Scholar 

  9. B.K. Park, D. Kim, S. Jeong, J. Moon, J.S. Kim, Thin Solid Films 19, 7706 (2007)

    Article  Google Scholar 

  10. Y. Lee, J.R. Choi, K.J. Lee, N.E. Stott, D. Kim, Nanotechnology 19, 415604 (2008)

    Article  Google Scholar 

  11. N.A. Luechinger, E.K. Athanassiou, W.J. Stark, Nanotechnology 19, 445201 (2008)

    Article  Google Scholar 

  12. H.S. Kim, S.R. Dhage, D.E. Shim, H.T. Hahn, Appl. Phys. A 97, 791 (2009)

    Article  Google Scholar 

  13. J.S. Kang, H.S. Kim, J. Ryu, H.T. Hahn, S. Jang, J.W. Joung, J. Mater. Sci.: Mater. Electron. 21, 1213 (2010)

    Google Scholar 

  14. S. Jang, Y. Seo, J. Choi, T. Kim, J. Cho, S. Kim, D. Kim, Scr. Mater. 62, 258 (2010)

    Article  Google Scholar 

  15. Y. Jianfeng, Z. Guisheng, H. Anming, Y.N. Zhou, J. Mater. Chem. 21, 15981 (2011)

    Article  Google Scholar 

  16. K. Woo, Y. Kim, B. Lee, J. Kim, J. Moon ACS Appl. Mater. Interfaces 3, 2377 (2011)

    Article  Google Scholar 

  17. C.S. Choi, Y.H. Jo, M.G. Kim, H.M. Lee, Nanotechnology 23, 065601 (2012)

    Article  Google Scholar 

  18. C.-J. Wu, S.-M. Chen, Y.-J. Sheng, H.-K. Tsao, J. Taiwan Inst. Chem. Eng. 45, 2719 (2014)

    Article  Google Scholar 

  19. W. Li, M. Chen, Appl. Surf. Sci. 290, 240 (2014)

    Article  Google Scholar 

  20. C.-J. Wu, S.-L. Cheng, Y.-J. Sheng, H.-K. Tsao, RSC Adv. 5, 53275 (2015)

    Article  Google Scholar 

  21. Y. Yong, T. Yonezawa, M. Matsubara, H. Tsukamoto, J. Mater. Chem. C 3, 5890 (2015)

    Article  Google Scholar 

  22. T. Yonezawa, H. Tsukamoto, Y. Yong, M. Thanh Nguyen, M. Matsubara, RSC Adv. 6, 12048 (2016)

    Article  Google Scholar 

  23. D.M. Kalyon, E. Birinci, R. Yazici, B. Karuv, S. Walsh, Polym. Eng. Sci. 42, 1609 (2002)

    Article  Google Scholar 

  24. Y. Hokita, M. Kanzaki, T. Sugiyama, R. Arakawa, H. Kawasaki, A.C.S. Appl, Mater. Interfaces 7, 19382 (2015)

    Article  Google Scholar 

  25. P.A. Buffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)

    Article  Google Scholar 

  26. S.H. Wu, D.H. Chen, J. Colloid Interface Sci. 273, 165 (2004)

    Article  Google Scholar 

  27. P. Kanninen, C. Johans, J. Merta, K. Kontturi, J. Colloid Interface Sci. 318, 88 (2008)

    Article  Google Scholar 

  28. J.L.C. Huaman, K. Sato, S. Kurita, T. Matsumoto, B. Jeyadevan, J. Mater. Chem. 21, 7062 (2011)

    Article  Google Scholar 

  29. D. Deng, Y. Cheng, Y. Jin, T. Qi, F. Xiao, J. Mater. Chem. 22, 23989 (2012)

    Article  Google Scholar 

  30. J. Mittal, K.-L. Lin, Mater. Charact. 109, 19 (2015)

    Article  Google Scholar 

  31. J.W.M. Frenken, J.F. Vanderveen, Phys. Rev. Lett. 54, 134 (1985)

    Article  Google Scholar 

  32. F.W. Young, J.V. Cathcart, A.T. Gwathmey, Acta Metall. 4, 145 (1956)

    Article  Google Scholar 

  33. K.K. Jee, W.Y. Lee, J. Korean Phys. Soc. 52, 1673 (2008)

    Article  Google Scholar 

  34. I. Kim, Y.A. Song, H.C. Jung, J.W. Joung, S.-S. Ryu, J. Kim, J. Electron. Mater. 37, 1863 (2008)

    Article  Google Scholar 

  35. J.-K. Jung, S.H. Choi, I. Kim, H.C. Jung, J. Joung, Y.-C. Joo, Philos. Mag. 88, 339 (2008)

    Article  Google Scholar 

  36. I. Kim, J. Kim, J. Appl. Phys. 108, 102807 (2010)

    Article  Google Scholar 

  37. I. Jung, Y.H. Jo, I. Kim, H.M. Lee, J. Electron. Mater. 41, 115 (2012)

    Article  Google Scholar 

  38. I. Kim, T.-M. Lee, J. Kim, J. Alloys Compd. 596, 158 (2014)

    Article  Google Scholar 

  39. Y. Kim, B. Lee, S. Yang, I. Byun, I. Jeong, S.M. Cho, Curr. Appl. Phys. 12, 473 (2012)

    Article  Google Scholar 

  40. S.B. Fredriksen, K.-J. Jens, Energy Procedia 37, 1770 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mr. Daisuke Murahashi and Ms. Kazuko Yamashita at Kansai University for the GC–MS measurements. This work was supported by JSPS KAKENHI (Grant Nos. 15H03520, 15H03526, 26505011 and 26107719) and Hitachi Metals Materials Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideya Kawasaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1526 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiyama, T., Kanzaki, M., Arakawa, R. et al. Low-temperature sintering of metallacyclic stabilized copper nanoparticles and adhesion enhancement of conductive copper film to a polyimide substrate. J Mater Sci: Mater Electron 27, 7540–7547 (2016). https://doi.org/10.1007/s10854-016-4734-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4734-8

Keywords

Navigation