Skip to main content
Log in

Sn–3.0Ag–0.5Cu nanocomposite solders reinforced by graphene nanosheets

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Various weight percentages (0, 0.02, 0.04, 0.06, 0.08, and 0.1 wt%) of graphene nanosheets (GNSs) were incorporated to Sn–3.0Ag–0.5Cu (SAC) solder using the powder metallurgy route. The physical, thermomechanical, wetting, microstructural and mechanical properties were evaluated. Experimental results present that the density and the coefficient of thermal expansion of nanocomposite solders are lower than those of plain SAC solder, while the wettability of nanocomposite solders is improved with the increasing addition of GNSs. Besides, as expected, adding GNSs has slight influence on melting temperature of SAC solder, as the melting temperature of an alloy is its inherent physical property. Furthermore, because the load can be transferred from matrix to GNSs, as well as microstructural refinement (the size of β-Sn decreases and the area fraction of eutectic network increases) and an increase in dislocation density after adding GNSs, the microhardness and shear strength are also improved with the elevating weight percentages of GNSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)

    Article  Google Scholar 

  2. C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Mater. Sci. Eng. R 44, 1 (2004)

    Article  Google Scholar 

  3. F. Rosalbino, E. Angelini, G. Zznicchi, R. Marazza, Mater. Chem. Phys. 109, 386 (2008)

    Article  Google Scholar 

  4. X. Hu, Y.C. Chan, K. Zhang, K.C. Yung, J. Alloys Comp. 580, 162 (2013)

    Article  Google Scholar 

  5. K.M. Kumar, V. Kripesh, A.A.O. Tay, J. Alloys Comp. 450, 229 (2008)

    Article  Google Scholar 

  6. Y. Li, K. Moon, C.P. Wong, Science 308, 1419 (2005)

    Article  Google Scholar 

  7. I.E. Anderson, J. Mater. Sci. Mater. Electron. 18, 55 (2007)

    Article  Google Scholar 

  8. X.D. Liu, Y.D. Han, H.Y. Jing, J. Wei, L.Y. Xu, Mater. Sci. Eng. A 562, 25 (2013)

    Article  Google Scholar 

  9. E.C.C. Yeh, W.J. Choi, K.N. Tu, Appl. Phys. Lett. 80, 580 (2002)

    Article  Google Scholar 

  10. L. Gao, S. Xue, L. Zhang, Z. Sheng, F. Ji, W. Dai, S.L. Yu, G. Zeng, Microelectron. Eng. 87, 2025 (2010)

    Article  Google Scholar 

  11. L.C. Tsao, C.H. Huang, C.H. Chung, R.S. Chen, Mater. Sci. Eng. A 545, 194 (2012)

    Article  Google Scholar 

  12. A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 2306 (2011)

    Article  Google Scholar 

  13. T.H. Chuang, M.W. Wu, S.Y. Chang, S.F. Ping, L.C. Tsao, J. Mater. Sci. Mater. Electron. 22, 1021 (2011)

    Article  Google Scholar 

  14. A.K. Gain, T. Fouzder, Y.C. Chan, W.K.C. Yung, J. Alloys Comp. 509, 3319 (2011)

    Article  Google Scholar 

  15. L.C. Tsao, J. Alloys Comp. 509, 8441 (2011)

    Article  Google Scholar 

  16. Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, J. Mater. Sci. Mater. Electron. 23, 1108 (2012)

    Article  Google Scholar 

  17. L.Y. Xu, Z.K. Zhang, H.Y. Jing, J. Wei, Y.D. Han, J. Mater. Sci. Mater. Electron. 26, 5625 (2015)

    Article  Google Scholar 

  18. R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, R. Martínez-Sánchez, J. Alloys Comp. 615, S578 (2014)

    Article  Google Scholar 

  19. S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, Z.M. Lin, Sci. Eng. A 612, 440 (2014)

    Article  Google Scholar 

  20. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 60 (2007)

    Article  Google Scholar 

  21. J. Wang, Z. Li, G. Fan, H. Pan, Z.X. Chen, D. Zhang, Scripta Mater. 66, 594 (2012)

    Article  Google Scholar 

  22. Y. Shi, J. Tian, H. Hao, Z.D. Xia, Y.P. Lei, F. Guo, J. Alloys Comp. 453, 180 (2008)

    Article  Google Scholar 

  23. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, ACS Nano 3, 3884 (2009)

    Article  Google Scholar 

  24. D. Yoon, Y.W. Son, H. Cheong, Nano Lett. 11, 3227 (2011)

    Article  Google Scholar 

  25. S.M.L. Nai, J. Wei, M. Gupta, Mater. Sci. Eng. A 423, 166 (2006)

    Article  Google Scholar 

  26. S.W. Yoon, W.K. Choi, H.M. Lee, Scripta Mater. 40, 297 (1999)

    Article  Google Scholar 

  27. Y.D. Han, S.M.L. Nai, H.Y. Jing, L.Y. Xu, C.M. Tan, J. Wei, J. Mater. Sci. Mater. Electron. 22, 315 (2011)

    Article  Google Scholar 

  28. K.S. Kim, S.H. Huh, K. Suganuma, Mater. Sci. Eng. A 333, 106 (2002)

    Article  Google Scholar 

  29. K.S. Kim, S.H. Huh, K. Suganuma, J. Alloys Comp. 352, 226 (2003)

    Article  Google Scholar 

  30. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work described in this paper was fully supported by a grant from the State Key Laboratory of New Soldering Materials and Technology (Project No. SKLABFMT-2015-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyang Xiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Xiu, Z., Wu, G. et al. Sn–3.0Ag–0.5Cu nanocomposite solders reinforced by graphene nanosheets. J Mater Sci: Mater Electron 27, 6809–6815 (2016). https://doi.org/10.1007/s10854-016-4631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4631-1

Keywords

Navigation