Skip to main content
Log in

Preparation and structural study of Mg1−x Zn x TiO3 ceramics and their dielectric properties from 1 Hz to 7.7 GHz

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Mg1−x Zn x TiO3, x = 0–0.5 (MZT0–MZT0.5) ceramics was synthesised and characterised. The dielectric properties of the samples in the frequency range of 1 Hz–7.7 GHz were explored using three different methods: a contacting electrode method, a parallel-plate method and a perturbed resonator method. The electrical properties in the space charge and dipolar polarisation frequency ranges are discussed in relation to the phase composition and microstructure data. Differences in the zinc substitution divided the dielectrics into two groups, namely MZT0–MZT0.2 and MZT0.3–MZT0.5, each with different amount of a main Mg1−x Zn x TiO3 solid solution phase and a secondary solid solution phase. Zinc substitution promoted the density of the ceramics, improved the purity of the main phase and increased the permittivity for frequencies up to 108 Hz, but reduced the permittivity in the microwave range. In the MZT0.3–MZT0.5 samples, for frequencies less than 1 MHz the quality (Q × f) factors were lower and log σ a.c, the AC conductivity, was higher than for the MZT0–MZT0.2 samples. Above 10 MHz, the (Q × f) factors and log σ a.c of the two groups were similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.A. Wechsler, R.B. Von Dreele, Acta Crystallogr. B B45, 6 (1989)

    Google Scholar 

  2. G. Pfaff, Ceram. Int. 20, 2 (1994)

    Article  Google Scholar 

  3. Parvanova, V., Maneva, M., Thermochim. Acta. 279, 137–141 (1996)

    Article  Google Scholar 

  4. J. Liao, M. Senna, Mater. Res. Bull. 30, 4 (1995)

    Article  Google Scholar 

  5. V.M. Ferreira, J.L. Baptista, Mater. Res. Bull. 29, 10 (1994)

    Article  Google Scholar 

  6. I.R. Abothu, A.V.P. Rao, S. Komarneni, Mater. Lett. 38, 3 (1999)

    Article  Google Scholar 

  7. M.K. Suresh, J.K. Thomas, H. Sreemoolanadhan, C.N. George, A. John, S. Solomon, P.R.S. Wariar, J. Koshy, Mater. Res. Bull. 45, 7 (2010)

    Google Scholar 

  8. Sreedhar, K., Pavaskar, N. R., Mater. Lett. 53, 452–455 (2002)

    Article  Google Scholar 

  9. Deng, Y.-F., et al., Inorg. Chim. Acta 363(4), 827–829 (2010)

    Article  Google Scholar 

  10. J. Bernard, F. Belnou, D. Houivet, J.-M. Haussonne, J. Mater. Process. Tech. 199, 1–3 (2008)

    Article  Google Scholar 

  11. X. Xue, H. Yu, G. Xu, J. Mater. Sci.-Mater. El. 24, 4 (2013)

    Google Scholar 

  12. B. Tang, H. Li, P. Fan, S. Yu, S. Zhang, J. Mater. Sci. Mater. El. 25, 6 (2014)

    Google Scholar 

  13. H.T. Wu, Y.S. Jiang, Y.J. Cui, X.H. Zhang, X. Jia, Y.L. Yue, Electron. Mater. 42, 3 (2013)

    Google Scholar 

  14. T. Yamanaka et al., Am. Mineral. 90, 1301–1307 (2005)

    Article  Google Scholar 

  15. S.R. Kiran, G. Sreenivasulu, V.R.K. Murthy, V. Subramanian, B.S. Murthy, J. Am. Ceram. Soc. 95, 6 (2012)

    Google Scholar 

  16. H. Wang, Q. Yang, D. Li, L. Huang, S. Zhao, S. Xu, J. Mater. Sci. Technol. 28, 8 (2012)

    Google Scholar 

  17. C. Vigreux, B. Deneuve, J. El Fallah, J.-M. Haussonne, J. Eur. Ceram. Soc. 21, 10–11 (2001)

    Article  Google Scholar 

  18. B. Tang, S. Zhang, X. Zhou, C. Deng, S. Yu, J. Alloys Compd. 492, 1–2 (2010)

    Article  Google Scholar 

  19. B. LiBin, B. Tang, S. Zhang, H. Jiang, J. Mater. Sci. 45, 23 (2010)

    Google Scholar 

  20. C.-L. Huang, J.L. Hou, C.-L. Pan, C.-Y. Huang, C.-W. Peng, C.-H. Wei, Y.-H. Huang, J. Alloy Compd. 450, 1–2 (2008)

    Article  Google Scholar 

  21. M.-L. Hsieh, L.-S. Chen, H.-C. Hsu, S. Wang, M.-P. Houng, S.-L. Fu, Mater. Res. Bull. 43, 11 (2008)

    Article  Google Scholar 

  22. A. Chaouchi, S. d’Astorg, S. Marinel, Ceram. Int. 35, 5 (2009)

    Google Scholar 

  23. J. Bernard, F. Belnou, D. Houivet, J.-M. Haussonne, J. Eur. Ceram. Soc. 25, 12 (2005)

    Google Scholar 

  24. F. Belnou, J. Bernard, D. Houivet, J.-M. Haussonne, J. Eur. Ceram. Soc. 25, 12 (2005)

    Article  Google Scholar 

  25. C.-L. Pan, C.-H. Shen, P.-C. Chen, T.-C. Tan, J. Alloys Compd. 503, 2 (2010)

    Article  Google Scholar 

  26. C.-L. Huang, K.-H. Chiang, J. Alloys Compd. 431, 1–2 (2007)

    Article  Google Scholar 

  27. Hunter, B., Rietica—a visual Rietveld program. (Int. Union Crystallogr. Commission on Powder Diffraction Newsl. No. 20, Summer 1998). http://www.mx.iucr.org/iucr-top/comm/cpd/Newsletters/no20summer1998/index.html. Accessed 20 Jan 2014

  28. D.L. Bish, S.A. Howard, J. Appl. Crystallogr. 21, 2 (1988)

    Article  Google Scholar 

  29. M.I. Mendelson, J. Am. Ceram. Soc. 52, 8 (1969)

    Article  Google Scholar 

  30. C.-L. Huang, Liu, S-Sheng. J. Am. Ceram. Soc. 91, 10 (2008)

    Google Scholar 

  31. Moulson, A.J., Herbert, J.M., Electroceramics: Materials, Properties and Applications, 2nd edn. (Wiley, West Sussex, 2003), pp. 63, 82–84

  32. S. Kumar, R. Kumar, B.H. Koo, H. Choi, D.U. Kim, C.G. Lee, J. Ceram. Soc. Jpn. 117, 5 (2009)

    Article  Google Scholar 

  33. N. Obradovic, N. Mitrovic, V. Pavlovic, Ceram. Int. 35, 1 (2009)

    Article  Google Scholar 

  34. Y.-M. Miao, Q.-L. Zhang, H. Yang, H.-P. Wang, Mater. Sci. Eng. B. 128, 1–3 (2006)

    Article  Google Scholar 

  35. Chiang, Y.-M., Birnie, D. P. III, Kingery, W.D., Physical Ceramics: Principles for Ceramic Science and Engineering (Wiley, Toronto, 1997) pp. 15–16, 35

  36. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edn. (Wiley, Toronto, 1976), pp. 947–950

    Google Scholar 

  37. Kim, E.S., Seo, S.N., J. Korean Ceram. Soc. 47, 163–168 (2010)

    Article  Google Scholar 

  38. Golovchansky, A., Kim, H.T., Kim, Y., J. Korean Phys. Soc. 32 (1998)

Download references

Acknowledgments

This work was partially funded by the Directorate General of Higher Education, Indonesian Ministry of Education and Culture under the Contract No. 07555.8/IT2.7/PN.01.00/2014. One of the authors (FUE) thanks Mrs. Heidi Lorenz, Mr. Wolfgang Güther and Mr. Jens Biberstein of BAM for helping in the preparation and characterisation of the ceramics in the middle frequency region, and Dr. Ralph Bäβler of BAM, who had acted as a liaison with the characterisation laboratory of BAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frida U. Ermawati.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S

XRD spectral fitting profiles of: a) MZT0.1 and b) MZT0.4 in Fig. 4 using the Rietveld-based Rietica program. +++ = the experimental spectrum, red line = the calculated spectrum, green line = the difference between the experimental and the calculated spectra, vertical blue bars underneath the spectra = positions of the Bragg peaks for the identified Mg1-xZnxTiO3 and (Mg1-δZnδ)2TiO4/(Zn1-δMgδ)2TiO4 phases. Figures-of-merit of the refinements are: RwpMZT0.1 = 15.17, RpMZT0.1 = 11.86, RexpMZT0.1 = 8.56 and GoFMZT0.1 = 3.1; RwpMZT0.4 = 17.82, RpMZT0.4 = 13.96, Rexp MZT0.4 = 8.65 and GoF MZT0.4 = 3.2 (EPS 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermawati, F.U., Pratapa, S., Suasmoro, S. et al. Preparation and structural study of Mg1−x Zn x TiO3 ceramics and their dielectric properties from 1 Hz to 7.7 GHz. J Mater Sci: Mater Electron 27, 6637–6645 (2016). https://doi.org/10.1007/s10854-016-4610-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4610-6

Keywords

Navigation