Skip to main content
Log in

Structural, optical and ferromagnetic properties of cobalt doped CdTe quantum dots

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt doped cadmium telluride (CdTe) quantum dots (QDs) were synthesized with different Co concentrations by using non-aqueous method. CoxCd1−xTe QDs were characterized using optical absorption and photoluminescence spectroscopy, X-ray diffraction and high resolution transmission electron microscopy (HRTEM). It was noted that Co2+ was incorporated CdTe QDs without any shift in the diffraction peaks. HRTEM images revealed that the CdTe QDs were regular spherical particles with an average diameter of ~3 nm for undoped CdTe QDs and the average size of 2, 5 and 15 % Co2+ doped CdTe QDs were 4, 6.5 and 2.8 nm, respectively. Magnetization recognized for 0, 2, 5 and 15 % cobalt doped CdTe QDs revealed a ferromagnetic signal and ferromagnetic hysteresis loop. For pristine CdTe QDs a weak ferromagnetism was attributed to the charge transfer between capping agent and host CdTe QDs. Co2+ doped CdTe QDs exhibit stronger ferromagnetism and magnetic parameters such as saturation magnetization, MS, remanence, MR, and coercivity, HC, of CoxCd1−xTe QDs were obtained from the hysteresis loops. It was found that with increasing the doping concentration of Co2+ in CdTe QDs up to 5 %, Ms increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Ebrahim, M. Reda, A. Hussien, D. Zayed, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 150, 212 (2015)

    Article  Google Scholar 

  2. S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. Von Molnar, M. Roukes, A.Y. Chtchelkanova, D. Treger, Science 294, 1488 (2001)

    Article  Google Scholar 

  3. I. Žutić, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  Google Scholar 

  4. D.J. Norris, A.L. Efros, S.C. Erwin, Science 319, 1776 (2008)

    Article  Google Scholar 

  5. S. Pan, S. Ebrahim, M. Soliman, Q. Qiao, J. Nanopart. Res. 15, 1 (2013)

    Article  Google Scholar 

  6. C.-C. Chen, Y.-J. Hsu, Y.-F. Lin, S.-Y. Lu, J. Phys. Chem. C 112, 17964 (2008)

    Article  Google Scholar 

  7. C.B. Murray, C. Kagan, M. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000)

    Article  Google Scholar 

  8. V.K. LaMer, R.H. Dinegar, J. ACS 72, 4847 (1950)

    Google Scholar 

  9. Z. Zang, X. Tang, J. Alloys Compd. 619, 98 (2015)

    Article  Google Scholar 

  10. J.D. Bryan, D.R. Gamelin, Prog. Inorg. Chem. 54, 47 (2005)

    Article  Google Scholar 

  11. A. Nag, S. Chakraborty, D. Sarma, J. ACS 130, 10605 (2008)

    Google Scholar 

  12. P.V. Radovanovic, D.R. Gamelin, J. ACS 123, 12207 (2001)

    Google Scholar 

  13. J.A. Gaj, J. Kossut, in Basic Consequences of sp–d and d–d Interactions in DMS, ed. by J.A. Gaj, J. Kossut (Springer, Verlag Berlin Heidelberg, 2010), pp. 1

  14. L. Besombes, Y. Léger, L. Maingault, D. Ferrand, H. Mariette, J. Cibert, Phys. Rev. Lett. 93, 207403 (2004)

    Article  Google Scholar 

  15. S.B. Singh, M.V. Limaye, N.P. Lalla, S.K. Kulkarni, J. Lumin. 128, 1909 (2008)

    Article  Google Scholar 

  16. S.B. Singh, M.V. Limaye, S.K. Date, S. Gokhale, S.K. Kulkarni, Phys. Rev. B 80, 235421 (2009)

    Article  Google Scholar 

  17. S. Kumar, S. Kumar, N. Verma, S. Chakarvarti, J. Mater. Sci. Mater. Electron. 22, 901 (2011)

    Article  Google Scholar 

  18. R.W. Meulenberg, J.R. Lee, S.K. McCall, K.M. Hanif, D. Haskel, J.C. Lang, L.J. Terminello, T. van Buuren, J. ACS 131, 6888 (2009)

    Google Scholar 

  19. C. Niu, R. Kershaw, K. Dwight, A. Wold, J. Solid State Chem. 85, 262 (1990)

    Article  Google Scholar 

  20. R. Jose, V. Biju, Y. Yamaoka, T. Nagase, Y. Makita, Y. Shinohara, Y. Baba, M. Ishikawa, Appl. Phys. A 79, 1833 (2004)

    Google Scholar 

  21. X. Peng, J. Wickham, A. Alivisatos, J. ACS 120, 5343 (1998)

    Google Scholar 

  22. D.V. Talapin, S. Haubold, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, J. Phys. Chem. B 105, 2260 (2001)

    Article  Google Scholar 

  23. D. Santos, A. Rocha, M. Macêdo, Powder Diffr. 23, S36 (2008)

    Article  Google Scholar 

  24. D. Roy, N.M. Das, P. Gupta, Appl. Surf. Sci. 271, 394 (2013)

    Article  Google Scholar 

  25. A. Balu, V. Nagarethinam, A. Thayumanavan, K. Murali, C. Sanjeeviraja, M. Jayachandran, J. Alloys Compd. 502, 434 (2010)

    Article  Google Scholar 

  26. M. Feteha, S. Ebrahim, M. Soliman, W. Ramdan, M. Raoof, J. Mater. Sci. Mater. Electron. 23, 1938 (2012)

    Article  Google Scholar 

  27. K.S. Rathore, D. Patidar, N. Saxena, K. Sharma, in Cadmium Sulphide Nanocrystallites: Synthesis, Optical and Electrical Studies, ed. by A. Pratap, N.S. Saxena. 5th National Conference on Thermophysical Properties (AIP Publishing, American Institute of Physics, 2010), p. 145

  28. I.L. Association (2002)

  29. S.-J. Ding, S. Liang, F. Nan, X.-L. Liu, J.-H. Wang, L. Zhou, X.-F. Yu, Z.-H. Hao, Q.-Q. Wang, Nanoscale 7, 1970 (2015)

    Article  Google Scholar 

  30. Y. Kim, Y.-C. Chang, M. Klein, Phys. Rev. B 48, 17770 (1993)

    Article  Google Scholar 

  31. T.J. Norman, D. Magana, T. Wilson, C. Burns, J.Z. Zhang, D. Cao, F. Bridges, J. Phys. Chem. B 107, 6309 (2003)

    Article  Google Scholar 

  32. J. Tian, L. Lv, C. Fei, Y. Wang, X. Liu, G. Cao, J. Mater. Chem. A 2, 19653 (2014)

    Article  Google Scholar 

  33. C.-G. Stefanita, Magnetism: Basics and Applications (Springer Science & Business Media, New York, 2012)

    Book  Google Scholar 

  34. J. Singh, N. Verma, Bull. Mater. Sci. 37, 541 (2014)

    Article  Google Scholar 

  35. K. Samanta, P. Bhattacharya, R. Katiyar, J. Appl. Phys. 105, 113929 (2009)

    Article  Google Scholar 

  36. L. Saravanan, A. Pandurangan, R. Jayavel, J. Nanopart. Res. 13, 1621 (2011)

    Article  Google Scholar 

  37. T. Dietl, Semicond. Semimet. 82, 371 (2008)

    Article  Google Scholar 

  38. M. Seong, H. Alawadhi, I. Miotkowski, A. Ramdas, S. Miotkowska, Phys. Rev. B 63, 125208 (2001)

    Article  Google Scholar 

  39. C. Liu, F. Yun, H. Morkoc, J. Mater. Sci. Mater. Electron. 16, 555 (2005)

    Article  Google Scholar 

  40. H. Morkoç, Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth (Wiley, New York, 2009)

    Google Scholar 

  41. P.I. Archer, S.A. Santangelo, D.R. Gamelin, Nano Lett. 7, 1037 (2007)

    Article  Google Scholar 

  42. M. Darbandi, F. Stromberg, J. Landers, N. Reckers, B. Sanyal, W. Keune, H. Wende, J. Phys. D Appl. Phys. 45, 195001 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Ebrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahim, S., Ramadan, W. & Ali, M. Structural, optical and ferromagnetic properties of cobalt doped CdTe quantum dots. J Mater Sci: Mater Electron 27, 3826–3833 (2016). https://doi.org/10.1007/s10854-015-4229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4229-z

Keywords

Navigation