Skip to main content
Log in

Improvement of magnetic properties, microstructure and magnetic structure of Fe73.5Cu1Nb3Si15.5B7 nanocrystalline alloys by two-step annealing process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fe73.5Cu1Nb3Si15.5B7 nanocrystalline alloys were prepared by using conventional one-step annealing process and two-step annealing process. It was found that two-step annealing process can effectively improve soft magnetic properties and optimize microstructure. By separately controlling the formation of Cu clusters and further optimize the nanocrystalline structure, Bcc α-Fe with the grain size of 13 nm is formed in samples pretreated at 400 °C and nanocrystallized at 560 °C for 1 h. The samples exhibit excellent magnetic properties, such as lower coercive force of 0.7 A/m, higher initial permeability of 9.16 × 104, lower core loss of 0.18 W/kg at 0.7 T and 400 Hz, and 0.5 W/kg at 0.7 T and 1 kHz, respectively. The microstructure and magnetic structure evolution during different annealing processes were investigated. Correlation among the magnetic properties, magnetic structures and the microstructures changes in two different crystallization processes was studied systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Yoshiyawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64, 6044 (1988)

    Article  Google Scholar 

  2. G. Bertotti, Hysteresis in Magnetism (Academic Press, San Diego, 1998)

    Google Scholar 

  3. K. Suzuki, G. Herzer, Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys. Scr. Mater. 67, 548–553 (2012)

    Article  Google Scholar 

  4. G. Herzer, Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 157(158), 133–136 (1996)

    Article  Google Scholar 

  5. G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)

    Article  Google Scholar 

  6. K. Hono, D.H. Ping, M. Ohnuma, H. Onodera, Cu Clustering and Si partitioning in the early crystallization stage of a Fe73.5Si13.5B9Nb3Cu1 amorphous alloy. Acta Mater. 47, 997–1006 (1999)

    Article  Google Scholar 

  7. K. Hono, A. Inoue, T. Sakurai, Atom probe analysis of Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material. Appl. Phys. Lett. 58(19), 2180–2182 (1991)

    Article  Google Scholar 

  8. Y. Zhang, K. Hono, A. Inoue, Clustering of Cu prior to the crystallization reaction in Fe–Zr–B–Cu amorphous alloy. Scripta Mater. 34, 1705–1710 (1996)

    Article  Google Scholar 

  9. J.D. Ayers et al., On the formation of nanocrystals in the soft magnetic alloy Fe73.5Nb3Cu1Si13.5B9. Acta Mater. 46(6), 1861–1874 (1998)

    Article  Google Scholar 

  10. J.D. Ayers, V.G. Harris, J.A. Sprague et al., IEEE Trans. Magn. 29, 2664 (1993)

    Article  Google Scholar 

  11. J.D. Ayers, V.G. Harris, J.A. Sprague et al., Nanostruct. Mater. 9, 391 (1997)

    Article  Google Scholar 

  12. S.H. Kim, M. Matsuura, M. Sakurai, K. Suzuki, J. Appl. Phys. 32, 676 (1993)

    Article  Google Scholar 

  13. T.-H. Noh, W.-K. Pi, I.K. Kang, Effects of two-step annealing on the magnetic properties of Fe–Cu–Mo–Si–B nanocrystalline alloy. J. Magn. Magn. Mater. 128, 129–132 (1993)

    Article  Google Scholar 

  14. Jiancheng Tang, Xingyu Mao et al., Effects of two-step annealing on the microstructures and soft magnetic properties of nanocrystalline Fe86Zr7B6Cu1 ribbons. J. Alloys Compd. 375, 233–238 (2004)

    Article  Google Scholar 

  15. M. Ohnuma, K. Hono, S. Linderoth et al., Acta Mater. 48, 4783 (2000)

    Article  Google Scholar 

  16. M. Matsuura, M. Nishijima, K. Takenaka et al., Evolution of fcc-Cu clusters and their structure changes in the soft magnetic Fe85.2Si1B9P4Cu0.8 (NANOMET) and FINEMET alloys observed by X-ray absorption fine structure. J. Appl. Phys. 117, 17A324 (2015)

    Article  Google Scholar 

  17. G. Herzer, Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans. Magn. 25, 3327–3329 (1989)

    Article  Google Scholar 

  18. K. Hono et al., The microstructure evolution of a Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material. Acta Metall. Mater. 40(9), 2137–2147 (1992)

    Article  Google Scholar 

  19. T. Bitoh, A. Makino, A. Inoue, The effect of grain-size distribution on coercivity in nanocrystalline soft magnetic alloys. J. Magn. Magn. Mater. 272–276, 1445–1446 (2004)

    Article  Google Scholar 

  20. T. Bitoh, A. Makino, A. Inoue et al., Random anisotropy model for nanocrystalline soft magnetic alloys with grain-size distribution. Mater. Trans. 44, 2011–2019 (2003)

    Article  Google Scholar 

  21. A. Gavrilović, Dusan M. Minić, Lidija D. Rafailović et al., Phase transformations of Fe73.5Cu1Nb3Si15.5B7 amorphous alloy upon thermal treatment. J. Alloys Compd. 504, 462–467 (2010)

    Article  Google Scholar 

  22. B. Francoeur, P. Couture, Continuous-annealing method for producing a flexible, curved, soft magnetic amorphous alloy ribbon. J. Appl. Phys. 111, 07A309 (2010)

    Google Scholar 

  23. A.H. Taghvaei, H. Shokrollahi, K. Janghorban et al., Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites. Mater. Des. 30, 3989 (2009)

    Article  Google Scholar 

  24. W.J. Yuan, F.J. Liu, T. Zhang, Core loss characteristics of Fe-based amorphous alloys. Intermetallics 17, 278–280 (2009)

    Article  Google Scholar 

  25. T. Bitoh, T. Ishikawa, H. Okumura, J. Phys. Conf. Ser. 266, 012026 (2011)

    Article  Google Scholar 

  26. G. Herzer, Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater. 61, 718–734 (2013)

    Article  Google Scholar 

  27. G. Herzer, Nanocrystalline soft magnetic alloys. Handb. Magn. Mater. 10, 415 (1997)

    Google Scholar 

  28. K. Suzuki, N. Ito, S. Saranu et al., Magnetic domains and annealing-induced magnetic anisotropy in nanocrystalline soft magnetic materials. J. Appl. Phys. 103, 07E730 (2008)

    Google Scholar 

  29. R. Schäfer, A. Hubert, G. Herzer, Domain observation on nanocrystalline material. J. Appl. Phys. 69, 5325–5327 (1991)

    Article  Google Scholar 

  30. S. Flohrer, R. Schäfer, G. Herzer, Acta Mater. 53, 2937–2942 (2005)

    Article  Google Scholar 

  31. L. Kraus, K. Zavea, O. Heczko et al., Magnetic anisotropy in as-quenched and stress-annealed amorphous and nanocrystalline Fe73.5CulNb3Si13.5B9 alloys. J. Magn. Magn. Mater. 112, 275–277 (1992)

    Article  Google Scholar 

  32. S. Flohrer, R. Schäfer, J. McCord et al., Magnetization loss and domain refinement in nanocrystalline tape wound cores. Acta Mater. 54, 3253–3259 (2006)

    Article  Google Scholar 

  33. S. Flohrer, R. Schäfer, G. Herzer, Magnetic microstructure of nanocrystalline FeCuNbSiB soft magnets. J. Non-Cryst. Solids 354, 5097–5100 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51201174). Ningbo International Cooperation Projects (2015D10022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anding Wang, Chuntao Chang or Fushan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Wang, A., He, A. et al. Improvement of magnetic properties, microstructure and magnetic structure of Fe73.5Cu1Nb3Si15.5B7 nanocrystalline alloys by two-step annealing process. J Mater Sci: Mater Electron 27, 3736–3741 (2016). https://doi.org/10.1007/s10854-015-4216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4216-4

Keywords

Navigation