Skip to main content
Log in

Modified solar power: electrochemical synthesis of Nitrogen doped few layer graphene for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hetero atom doped few layers of reduced graphene have been synthesized by single step approach called solar power modified electrochemical technique and investigated for supercapacitor applications. The structure and morphology of nitrogen doped graphene nanosheets (S-NGNS) was characterized with powder X-ray diffraction (XRD), SEM, HR-TEM, FTIR, Raman and XPS. The electrochemical activity of the S-NGNS was evaluated using CV, charge–discharge and impedance spectroscopy (EIS) in 0.5 M H2SO4 electrolyte solution. From X-ray photoelectron spectroscopy (XPS) analysis, it was confirmed that the trace amount (0.48 %) of N doping in the reduced graphene oxide (rGO) nanosheets. As an electrode for supercapacitor the proposed S-NGNS showed the specific capacitance (Scp) values of 85 F/g at constant current density of 0.125 A/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films. Science 22, 666–669 (2004)

    Article  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  3. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  Google Scholar 

  4. Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy Environ. Sci. 4, 1113–1132 (2011)

    Article  Google Scholar 

  5. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  6. X. Wang, Y. Haijun, F. Liu, M. Li, L. Wang, S. Li, Q. Li, Y. Xu, R. Tian, Z. Yu, D. Xiang, J. Cheng, Large-scale synthesis of few layered graphene using CVD. Chem. Vap. Depos. 15, 53–56 (2009)

    Article  Google Scholar 

  7. Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48, 2118–2122 (2010)

    Article  Google Scholar 

  8. M.D. Stoller, S. Park, Z. Yanwu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  Google Scholar 

  9. Z.S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, H.M. Cheng, Field emission of single layer graphene films prepared by electrophoretic deposition. Adv. Mater. 21, 1756–1760 (2009)

    Article  Google Scholar 

  10. H. Terrones, R. Lv, M. Terrones, M.S. Dresselhaus, The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep. Prog. Phys. 75, 0625011 (2012). doi:10.1088/0034-4885/75/6/062501

    Article  Google Scholar 

  11. K. Fujisawa, R.C. Silva, K.S. Yang, Y.A. Kim, T. Hayashi, M. Endo, M. Terronesbd, M.S. Dresselhause, Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications. J. Mater. Chem. A 2, 9532–9540 (2014)

    Article  Google Scholar 

  12. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009)

    Article  Google Scholar 

  13. P. Chen, J.J. Yang, S.S. Li, Z. Wang, T.Y. Xiao, Y.H. Qian, S.H. Yu, Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2, 249–256 (2013)

    Article  Google Scholar 

  14. D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.X. Li, Q. Fu, X. Ma, Q. Xue, G. Sun, X. Bao, Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188–1193 (2011)

    Article  Google Scholar 

  15. Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010)

    Article  Google Scholar 

  16. C.P. Ewels, M. Glerup, Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1345–1363 (2005)

    Article  Google Scholar 

  17. Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksay, Y. Lin, Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20, 7491–7496 (2010)

    Article  Google Scholar 

  18. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472–2477 (2011)

    Article  Google Scholar 

  19. Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Crumbeld nitrogen doped graphene nanosheets with ultra high pore volume for high performance supercapacitor. Adv. Mater. 24, 5610–5616 (2012)

    Article  Google Scholar 

  20. A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 6337–6342 (2010)

    Article  Google Scholar 

  21. Y. Xin, J. Liu, X. Jie, W. Liu, F. Liu, Y. Yin, J. Gu, Z. Zou, Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts. Electrochim. Acta 60, 354–358 (2012)

    Article  Google Scholar 

  22. T. Cui, R. Lv, Z.H. Huang, H. Zhu, J. Zhang, Z. Li, Y. Jia, F. Kang, K. Wang, D. Wu, Synthesis of nitrogen-doped carbon thin films and their applications in solar cells. Carbon 49, 5022–5028 (2011)

    Article  Google Scholar 

  23. Z. Lin, M. Song, Y. Ding, Y. Liu, M. Liu, C. Wong, Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction. Phys. Chem. Chem. Phys. 14, 3381–3387 (2012)

    Article  Google Scholar 

  24. Y. Zhang, J. Ge, L. Wang, D. Wang, F. Ding, X. Tao, W. Chen, Manageable N-doped graphene for high performance oxygen reduction reaction. Sci. Rep. 3, 2771 (2013)

    Google Scholar 

  25. Y.C. Lin, C.Y. Lin, P.W. Chiu, Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 96, 133110 (2010)

    Article  Google Scholar 

  26. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z.Y. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)

    Article  Google Scholar 

  27. G.X. Wang, B. Wang, J. Park, Y. Wang, B. Sun, J. Yao, Highly efficient and large scale synthesis of graphene by electrolytic exfoliation. Carbon 47, 3242–3246 (2009)

    Article  Google Scholar 

  28. D. Wei, L. Grande, V. Chundi, R. White, C. Bower, P. Andrew, T. Ryhanen, Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices. Chem. Commun. 48, 1239–1241 (2012)

    Article  Google Scholar 

  29. K. Parvez, R.J. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S.H. Wang et al., Electrochemically exfoliated graphene as solution processable, highly conductive electrodes for organic electronics. ACS Nano 7, 3598–3606 (2013)

    Article  Google Scholar 

  30. L. Zhao, L. Fan, M. Zhou, H. Guan, S. Qiao, M. Antonietti, M. Titirici, Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv. Mater. 22, 5202–5206 (2010)

    Article  Google Scholar 

  31. H. Nolan, B.M. Sanchez, N.A. Kumar, N. McEvoy, S. O’Brien, V. Nicolosi, G.S. Duesberg, Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors. Phys. Chem. Chem. Phys. 16, 2280–2284 (2014)

    Article  Google Scholar 

  32. Y. Lu, Y. Huang, M. Zhang, Y. Chen, Nitrogen-doped graphene materials for supercapacitor applications. J Nanosci. Nanotechnol. 14, 1134–1144 (2014)

    Article  Google Scholar 

  33. X. Lu, C. Zhao, Controlled electrochemical intercalation, exfoliation and in situ nitrogen doping of graphite in nitrate-based protic ionic liquids. Phys. Chem. Chem. Phys. 15, 20005–20009 (2013)

    Article  Google Scholar 

  34. V. Thirumal, A. Pandurangan, R. Jayavel, K.S. Venkatesh, N.S. Palani, R. Ragavan, R. Ilangovan, Single pot electrochemical synthesis of functionalized and phosphorus doped graphene nanosheets for supercapacitor applications. J. Mater. Sci. Mater. Electron. 26, 6319–6328 (2015)

    Article  Google Scholar 

  35. M. Zhoua, J. Tang, Q. Cheng, G. Xu, P. Cui, L.C. Qin, Few-layer graphene obtained by electrochemical exfoliation of graphite cathode. Chem. Phy. Lett. 572, 61–65 (2013)

    Article  Google Scholar 

  36. T. Kuila, P. Khanra, N.H. Kim, S.K. Choi, H.J. Yun, J.H. Lee, One-step electrochemical synthesis of 6-amino-4-hydroxy-2-napthalene-sulfonic acid functionalized graphene for green energy storage electrode materials. Nanotechnology 24, 365706 (2013)

    Article  Google Scholar 

  37. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic affects. Solid State Commun. 143, 47–57 (2007)

    Article  Google Scholar 

  38. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved raman spectroscopy of single and few-layer graphene. Nano Lett. 7, 238–242 (2007)

    Article  Google Scholar 

  39. L. Feng, L. Yang, Z. Huang, J. Luo, M. Li, D. Wang, Y. Chen, Enhancing electrocatalytic oxygen reduction on nitrogen-doped graphene by active sites implantation. Sci. Rep. 3, 3306 (2013)

    Google Scholar 

  40. S. Boncel, S.W. Pattinson, V. Geiser, M.S.P. Shaffer, K.K.K. Koziol, En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays. Beilstein J. Nanotechnol. 5, 219–233 (2014)

    Article  Google Scholar 

  41. A. Misra, P.K. Tyagi, M.K. Singh, D.S. Misra, FTIR studies of nitrogen doped carbon nanotubes. Diam. Relat. Mater. 15, 385–388 (2006)

    Article  Google Scholar 

  42. Y. Li, J. Wang, X. Li, D. Geng, M.N. Banis, R. Li, X. Sun, Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries. Electrochem. Commun. 18, 12–15 (2012)

    Article  Google Scholar 

  43. Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksay, Y. Lin, Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20, 7491–7496 (2010)

    Article  Google Scholar 

  44. X. Qiao, S. Liao, C. You, R. Chen, Phosphorus and Nitrogen dual doped and simultaneously reduced graphene oxide with high surface area as efficient metal-free electrocatalyst for oxygen reduction. Catalysts 5, 981–991 (2015)

    Article  Google Scholar 

  45. H.L. Poha, P. Simekb, Z. Soferb, I. Tomandlc, M. Pumera, Boron and nitrogen doping of graphene via thermal exfoliation of graphite oxide in a BF3 or NH3 atmosphere: contrasting properties. J. Mater. Chem. A 1, 13146–13153 (2013)

    Article  Google Scholar 

  46. K.H. Kim, M.H. Yang, K.M. Cho, Y.S. Jun, S.B. Lee, H.T. Jung, High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures. Sci. Rep. 3, 3251 (2013)

    Google Scholar 

  47. L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, H. Fu, Nitrogen-doped graphene with high nitrogen level via a one step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv. 2, 4498–4506 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ilangovan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirumal, V., Pandurangan, A., Jayakumar, D. et al. Modified solar power: electrochemical synthesis of Nitrogen doped few layer graphene for supercapacitor applications. J Mater Sci: Mater Electron 27, 3410–3419 (2016). https://doi.org/10.1007/s10854-015-4173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4173-y

Keywords

Navigation