Skip to main content

Advertisement

Log in

Cr-doped MnO2 nanostructure: morphology evolution and electrochemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cr-doped MnO2 nanostructure has been fabricated via a facile hydrothermal method and its morphology and electrochemical properties was discussed systematically. In this process, flower-like MnO2 transforms into the self-assembled orchid structure under the influence of Cr-doped. Moreover, electrochemical behaviors of the Cr-doped MnO2 nanostructure electrode were clarified by cyclic voltammograms, galvanostatic charge/discharge tests and electrochemical impedance spectroscopy, which shows a high specific capacitance of 202.5 F g−1 and superior cycling stability (6.8 % capacitance decay after 1000 cycling test). These remarkable and excellent results prove it has a great potential of application in future energy storage device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.R. Miller, P. Simon, Science 321, 651–652 (2008)

    Article  Google Scholar 

  2. M. Armand, J.M. Tarascon, Nature 451, 652–657 (2008)

    Article  Google Scholar 

  3. R. Kotz, M. Carlen, Electrochim. Acta 45, 2483–2498 (2000)

    Article  Google Scholar 

  4. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  5. C. Liu, F. Li, M. Lai-Peng, H.M. Cheng, Adv. Mater. 22, E28–E62 (2010)

    Article  Google Scholar 

  6. C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Nano Lett. 6, 2690–2695 (2006)

    Article  Google Scholar 

  7. L. Xiong, Y. Teng, Y. Wu, J. Wang, Z. He, Ceram. Int. 40, 15561–15568 (2014)

    Article  Google Scholar 

  8. Y. Jiang, X. Leng, Z. Jia, H. Chen, H. Suo, C. Zhao, J. Mater. Sci.: Mater. Electron. 26, 2995–3000 (2015)

    Google Scholar 

  9. W. Wei, X. Cui, W. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697–1721 (2011)

    Article  Google Scholar 

  10. Z. Li, Z. Liu, D. Li, B. Li, Q. Li, Y. Huang, H. Wang, J. Mater. Sci.: Mater. Electron. 26, 353–359 (2014)

    Google Scholar 

  11. L. Chen, D. Zhu, Ceram. Int. 41, 7054–7058 (2015)

    Article  Google Scholar 

  12. I.I. Misnon, R.A. Aziz, N.K.M. Zain, B. Vidhyadharan, S.G. Krishnan, R. Jose, Mater. Res. Bull. 57, 221–230 (2014)

    Article  Google Scholar 

  13. X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun, L. Zhang, J. Zhang, Appl. Energy 134, 439–445 (2014)

    Article  Google Scholar 

  14. R. Dong, Q. Ye, L. Kuang, X. Lu, Y. Zhang, X. Zhang, G. Tan, Y. Wen, F. Wang, ACS Appl. Mater. Interfaces 5, 9508–9516 (2013)

    Article  Google Scholar 

  15. E. Machefaux, T. Brousse, D. Bélanger, D. Guyomard, J. Power Sources 165, 651–655 (2007)

    Article  Google Scholar 

  16. D.P. Dubal, W.B. Kim, C.D. Lokhande, J. Phys. Chem. Solids 73, 18–24 (2012)

    Article  Google Scholar 

  17. D. Yang, J. Power Sources 198, 416–422 (2012)

    Article  Google Scholar 

  18. Y. Chen, Y. Zhao, X. An, J. Liu, Y. Dong, L. Chen, Electrochim. Acta 54, 5844–5850 (2009)

    Article  Google Scholar 

  19. S. Zhao, T. Liu, D. Hou, W. Zeng, B. Miao, S. Hussain, X. Peng, M.S. Javed, Appl. Surf. Sci. 356, 259–265 (2015)

    Article  Google Scholar 

  20. X. Wang, Y.D. Li, Chem.—Eur. J. 9, 300–306 (2015)

    Article  Google Scholar 

  21. X. Li, W. Li, X. Chen, C. Shi, J. Cryst. Growth 297, 387–389 (2006)

    Article  Google Scholar 

  22. W. Ma, H. Nan, Z. Gu, B. Geng, X. Zhang, J. Mater. Chem. A. 3, 5442–5448 (2015)

    Article  Google Scholar 

  23. Y. Zhao, P. Jiang, Colloids Surf., A 444, 232–239 (2014)

    Article  Google Scholar 

  24. P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, Z.L. Wang, Nano Lett. 14, 731–736 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support to this work from the National Natural Science Foundation of China under Grant Number 11332013, the fund of Chongqing University’s Large-scale Equipment (No. 2013121568), and Graduate Student Scientific Research Innovation Project of Chongqing (No. CYS14011). Fundamental Research Funds for Central Universities (No. 106112015CDJXY130013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianmo Liu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Liu, T., Zhang, Y. et al. Cr-doped MnO2 nanostructure: morphology evolution and electrochemical properties. J Mater Sci: Mater Electron 27, 3265–3270 (2016). https://doi.org/10.1007/s10854-015-4154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4154-1

Keywords

Navigation