Skip to main content
Log in

Giant dielectric response and magnetoelectric behavior of 95BiFeO3–5BaTiO3 (95BFO–5BT) ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A detailed study of electrical behavior of 95BiFeO3–5BaTiO3 (95BFO–5BT) ceramics through comprehensive analysis of temperature and frequency dependent dielectric behavior, ac impedance and magnetodielectric (MD) properties is reported here. Addition of insulating BaTiO3 into BiFeO3 have exhibited enhanced dielectric and ferromagnetic responses. The remnant polarization (Pr) was found to be 6 µC/cm2, while the dielectric constant was found to be very high (\(\varepsilon_{\text{r}}^{\prime }\) ≥ 102, for T ≥ 140 °C). Along with strong conductivity contribution to \(\varepsilon_{\text{r}}^{\prime }\), spectroscopic plots of \(\varepsilon_{\text{r}}^{\prime }\) revealed the Maxwell–Wagner type relaxation in the sample, which ultimately could have led to an apparent high \(\varepsilon_{\text{r}}^{\prime }\) in 95BFO–5BT ceramics. Origin of such a high \(\varepsilon_{\text{r}}^{\prime }\) in BFO–BT was further investigated using impedance spectroscopy. MD studies revealed the magneto-electric coupling in the ceramics. The MD studies along with anomaly in dielectric data near antiferromagnetic ordering temperature (TN = 170 °C) of BFO suggests the magnetic bearing on the electrical properties of 95BFO–5BT ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N.D. Mathur, W. Eerenstein, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  2. M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005)

    Article  Google Scholar 

  3. I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C 15, 4835 (1982)

    Article  Google Scholar 

  4. G.D. Achenbach, W.J. James, R. Gerson, J. Am. Ceram. Soc. 50, 437 (1967)

    Article  Google Scholar 

  5. C. Tabares Munoz, J.-P. Rivera, A. Bezinges, A. Monnier, H. Schmid, Jpn. J. Appl. Phys. 24, 1051 (1985)

    Article  Google Scholar 

  6. V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628 (2002)

    Article  Google Scholar 

  7. S.V. Kiselev, R.P. Ozerov, G.S. Zhdanov, Sov. Phys. Dokl. 7, 742 (1963)

    Google Scholar 

  8. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C 13, 1931 (1980)

    Article  Google Scholar 

  9. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855 (2000)

    Article  Google Scholar 

  10. M.T. Buscaglia, L. Mitoseriu, V. Buscaglia, I. Pallecchi, M. Viviani, P. Nanni, A.S. Siri, J. Eur. Ceram. Soc. 26, 3027 (2006)

    Article  Google Scholar 

  11. R. Rai, I. Bdikin, M.A. Valente, A.L. Kholkin, Mater. Chem. Phys. 119, 539 (2010)

    Article  Google Scholar 

  12. R.A.M. Gotardo, I.A. Santos, L.F. Cótica, É.R. Botero, D. Garcia, J.A. Eiras, Scr. Mater. 61, 508 (2009)

    Article  Google Scholar 

  13. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)

    Article  Google Scholar 

  14. C. Zhou, H. Yang, Q. Zhou, G. Chen, W. Li, H. Wang, J. Mater. Sci.: Mater. Electron. 24, 1685 (2013)

    Google Scholar 

  15. H.Y. Dai, J. Chen, T. Li, D.W. Liu, R.Z. Xue, H.W. Xiang, Z.P. Chen, J. Mater. Sci.: Mater. Electron. 26, 3717 (2015)

    Google Scholar 

  16. M. Kumar, S. Shankar, O. Thakur, A. Ghosh, J. Mater. Sci.: Mater. Electron. 26, 1427 (2015)

    Google Scholar 

  17. J. Bernard, Piezoelectric Ceramics (Academic Press, New York, 1971)

    Google Scholar 

  18. G. Arlt, D. Hennings, G. de With, J. Appl. Phys. 58, 1619 (1985)

    Article  Google Scholar 

  19. Y. Yuan, M. Du, S. Zhang, Z. Pei, J. Mater. Sci.: Mater. Electron. 20, 157 (2009)

    Google Scholar 

  20. W. Li, J. Qi, Y. Wang, L. Li, Z. Gui, Mater. Lett. 57, 1 (2002)

    Article  Google Scholar 

  21. A. Umeri, T. Kuku, N. Scuor, V. Sergo, J. Mater. Sci. 43, 922 (2008)

    Article  Google Scholar 

  22. Y. Yuan, S. Zhang, W. You, Mater. Lett. 58, 1959 (2004)

    Article  Google Scholar 

  23. J. Kolte, D. Gulwade, A. Daryapurkar, P. Gopalan, Mater. Sci. Forum 702, 1011 (2012)

    Google Scholar 

  24. P. Salame, R. Drai, O. Prakash, A.R. Kulkarni, Ceram. Int. 40, 4491 (2014)

    Article  Google Scholar 

  25. S. Chandarak, A. Ngamjarurojana, S. Srilomsak, P. Laoratanakul, S. Rujirawat, R. Yimnirun, Ferroelectrics 410, 75 (2010)

    Article  Google Scholar 

  26. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  27. C.R. Bowen, D.P. Almond, Mater. Sci. Technol. 22, 719 (2006)

    Article  Google Scholar 

  28. D.P. Almond, C.R. Bowen, D.A.S. Rees, J. Phys. D Appl. Phys. 39, 1295 (2006)

    Article  Google Scholar 

  29. P.H. Salame, O. Prakash, A.R. Kulkarni, J. Am. Ceram. Soc. 96, 2184 (2013)

    Article  Google Scholar 

  30. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  31. A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, J. Mater. Chem. C 2, 5885 (2014)

    Article  Google Scholar 

  32. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  Google Scholar 

  33. D. Cao, M.Q. Cai, Y. Zheng, W.Y. Hu, Phys. Chem. Chem. Phys. 11, 10934 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Department of Metallurgical Engineering and Materials Science, CRNTS of IIT Bombay for extending all the characterization facilities viz. XRD, SEM, Dielectric, SQUID magnetometer etc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paresh H. Salame or Jayant T. Kolte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raut, R.R., Salame, P.H., Kolte, J.T. et al. Giant dielectric response and magnetoelectric behavior of 95BiFeO3–5BaTiO3 (95BFO–5BT) ceramics. J Mater Sci: Mater Electron 27, 730–737 (2016). https://doi.org/10.1007/s10854-015-3810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3810-9

Keywords

Navigation