Skip to main content

Advertisement

Log in

Comparison of chemical and physical reduction methods to prepare layered graphene by graphene oxide: optimization of the structural properties and tuning of energy band gap

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A systematic study to optimize the structural properties of graphene synthesized from modified graphene by both chemical and physical reduction methods were studied. In the chemical method, the two most common reducing agent hydrazine hydrate and sodium borohydride at different concentrations were used. In the physical method, two different samples were produced using a heat treatment at 200 °C in the presence of argon gas. Structural properties, morphology and functional groups of samples by SEM, TEM, XRD, FTIR, UV–Vis, PL and TGA were analyzed. The results show that graphene sheets have been produced in all methods. This study showed that modified graphene with hydrazine hydrate (3 ml per 100 mg of GO) has the best structural properties. The result of physical reduction method by heat treatment in argon gas showed the lowest energy gap among other samples. The PL emission spectroscopy showed the strong intensities at 500 and 600 nm due to the overlap of the second order emissions in the electron–hole recombination processes as results from different types of electronically excited states and physical reduction had minimum of intensity. The obtained graphene nano-sheets showed an energy band gap from 1.37 to 2.70 eV that is suggested as an application method in opening of the energy band gap. However, synthesized graphene by the chemical reduction method by hydrazine hydrate treatment has the better structure, but the physical reduction method is rapid and equally appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  2. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008)

    Article  Google Scholar 

  3. R. Verdejo, F. Barroso-Bujans, M.A. Rodríguez-Pérez, J.A. de Saja, M.A. López-Manchado, Functionalized graphene sheet filled silicone foam nanocomposites. J. Mater. Chem. 18, 2221–2226 (2008)

    Article  Google Scholar 

  4. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)

    Article  Google Scholar 

  5. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  Google Scholar 

  6. S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen, R.S. Ruoff, Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)

    Article  Google Scholar 

  7. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  8. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  Google Scholar 

  9. K.I. Bolotin, K.J.S. Stormer, Z.J.M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  Google Scholar 

  10. M. Eizenberg, J.M. Blakely, Carbon monolayer phase condensation on Ni(111). Surf. Sci. 82, 228–236 (1970)

    Article  Google Scholar 

  11. K.S. Novoselov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  12. C. Berger, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  Google Scholar 

  13. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)

    Article  Google Scholar 

  14. B.C. Brodie, Sur le poids atomique du graphite. Ann. Chim. Phys. 56, 466 (1860)

    Google Scholar 

  15. L. Staudenmaier, Verfahren zur Darstellung der Graphitsaure. Ber. Deut. Chem. Ges. 31, 1481 (1898)

    Article  Google Scholar 

  16. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  17. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    Article  Google Scholar 

  18. A. Buchsteiner, A. Lerf, J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110, 22328–22338 (2006)

    Article  Google Scholar 

  19. I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R.S. Ruoff, Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7, 3569–3575 (2007)

    Article  Google Scholar 

  20. Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856–5857 (2008)

    Article  Google Scholar 

  21. J.R. Lomeda, C.D. Doyle, D.V. Kosynkin, W.-F. Hwang, J.M. Tour, Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008)

    Article  Google Scholar 

  22. R. Muszynski, B. Seger, P.V. Kamat, Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 112, 5263–5266 (2008)

    Article  Google Scholar 

  23. M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Pruďhomme, Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007)

    Article  Google Scholar 

  24. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  Google Scholar 

  25. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1(5), 403–408 (2009)

    Article  Google Scholar 

  26. X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2009)

    Article  Google Scholar 

  27. Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang, Y. Chen, Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res. 3(9), 661–669 (2010)

    Article  Google Scholar 

  28. Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007)

    Article  Google Scholar 

  29. E.H.L. Falcao, R.G. Blair, J.J. Mack, L.M. Viculis, C.W. Kwon, M. Bendikov, R.B. Kaner, B.S. Dunn, F. Wudl, Microwave exfoliation of a graphite intercalation compound. Carbon 45, 1367–1369 (2007)

    Article  Google Scholar 

  30. X. Zhang, K. Li, H. Li, J. Lu, Q. Fu, Y. Chu, Graphene nanosheets synthesis via chemical reduction of graphene oxide using sodium acetate trihydrate solution. Synth. Met. 193, 132–138 (2014)

    Article  Google Scholar 

  31. J. Shen, T. Li, Y. Long, M. Shi, N. Li, M. Ye, One-step solid state preparation of reduced graphene oxide. Carbon 50(6), 2134–2140 (2012)

    Article  Google Scholar 

  32. C.D. Zangmeister, Preparation and evaluation of graphite oxide reduced at 220 °C. Chem. Mater. 22, 5625–5629 (2010)

    Article  Google Scholar 

  33. J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008)

    Article  Google Scholar 

  34. G. Venugopal, K. Krishnamoorthy, R. Mohan, S.-J. Kim, An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys. 132(1), 29–33 (2012)

    Article  Google Scholar 

  35. K. Krishnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013)

    Article  Google Scholar 

  36. H. Liu, Y. Liu, D. Zhu, Chemical doping of graphene. J. Mater. Chem. 21(10), 3335 (2011)

    Article  Google Scholar 

  37. S. Yang, W. Yue, D. Huang, C. Chen, H. Lin, X. Yang, A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv. 2(23), 8827–8832 (2012)

    Article  Google Scholar 

  38. K. Krishnamoorthy, R. Mohan, S.-J. Kim, Graphene oxide as a photocatalytic material. Appl. Phys. Lett. 98(24), 244101 (2011)

    Article  Google Scholar 

  39. S. Safa, R. Sarraf-Mamoory, R. Azimirad, Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film. Phys. E Low-dimens. Syst. Nanostruct. 57, 155–160 (2014)

    Article  Google Scholar 

  40. H.-C. Hsu, I. Shown, H.-Y. Wei, Y.-C. Chang, H.-Y. Du, Y.-G. Lin, C.-A. Tseng, C.-H. Wang, L.-C. Chen, Y.-C. Lin, Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 5(1), 262–268 (2012)

    Article  Google Scholar 

  41. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nanosci. Eng. 2, 154–160 (2012)

    Article  Google Scholar 

  42. S. Shukla, S. Saxena, Spectroscopic investigation of confinement effects on optical properties of graphene oxide. Appl. Phys. Lett. 98(7), 73104 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-M. Bagheri-Mohagheghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poorali, MS., Bagheri-Mohagheghi, MM. Comparison of chemical and physical reduction methods to prepare layered graphene by graphene oxide: optimization of the structural properties and tuning of energy band gap. J Mater Sci: Mater Electron 27, 260–271 (2016). https://doi.org/10.1007/s10854-015-3749-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3749-x

Keywords

Navigation