Skip to main content
Log in

Influence of oxygen pressure on the growth and physical properties of pulsed laser deposited Cu2O thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper oxide (Cu2O) thin films are prepared by pulsed laser deposition (PLD) technique at different oxygen pressure (PO2). The structural, morphological, optical and electrical properties of the grown thin films are investigated systematically. XRD pattern indicates the polycrystalline nature and pure Cu2O phase thin films. The crystallinity and grain size are found to be improved with oxygen gas pressure (PO2). AFM and FESEM analysis described the dense and crystalline morphologies with minimal film roughness. AFM analysis illustrates the increased mean height and the average parameter of the grain with PO2. UV–visible optical spectra has shown large absorption (% A) of light with an apparent shift in the optical band gap from 2.56 to 2.5 eV with an increase in PO2. The thin films are quite transparent in the visible region above 500 nm. The room temperature electrical resistivity of the films is of the order of ~103 Ω-cm. The crystallography, density of defects and the energy gap appraise the film resistivity. The p-type conductivity of Cu2O is related to the presence of Cu-vacancies. The obtained activation energy and current–voltage (I–V) properties, highlight the potential applications of Cu2O films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.P. Norton, Mat. Sci. Eng. R 43, 139 (2004)

    Article  Google Scholar 

  2. Z.Q. Yao, S.L. Liu, L. Zhang, B. He, A. Kumar, X. Jiang, W.J. Zhang, G. Shao, Appl. Phys. Lett. 101, 042114 (2012)

    Article  Google Scholar 

  3. A. Chen, H. Long, X. Li, Y. Li, G. Yang, P. Lu, Vacuum 83, 927 (2009)

    Article  Google Scholar 

  4. L. De Los Santos Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J.A. Aguiar, Y. Majima, Thin Solid Films 520, 6368 (2012)

    Article  Google Scholar 

  5. F.A. Akgul, G. Akgul, N. Yildirim, H.E. Unalan, R. Turan, Mater. Chem. Phys. 147, 987 (2014)

    Article  Google Scholar 

  6. L. Zhang, L. McMillon, J. McNatt, Sol. Energy Mat. Sol. C. 108, 230 (2013)

    Article  Google Scholar 

  7. J. Deuermeier, J. Gassmann, J. Brotz, A. Klein, J. Appl. Phys. 109, 113704 (2011)

    Article  Google Scholar 

  8. R.P. Wijesundera, Semicond. Sci. Technol. 25, 045015 (2010)

    Article  Google Scholar 

  9. C.C. Tseng, J.H. Hsieh, W. Wu, Thin Solid Films 519, 5169 (2011)

    Article  Google Scholar 

  10. G. Guerguerian, F. Elhordoy, C.J. Pereyra, R.E. Marotti, F. Martin, D. Leinen, J.R. Ramos-Barrado, E.A. Dalchiele, J. Phys. D Appl. Phys. 45, 245301 (2012)

    Article  Google Scholar 

  11. D.S. Darvish, H.A. Atwater, J. Cryst. Growth 319, 39 (2011)

    Article  Google Scholar 

  12. A. Karapetyan, A. Reymers, S. Giorgio, C. Fauquet, L. Sajti, S. Nitsche, M. Nersesyan, V. Gevorgyan, W. Marine, J. Lumin. 159, 325 (2015)

    Article  Google Scholar 

  13. H. Raebiger, S. Lany, A. Zunger, Phys. Rev. B 76(325), 045209 (2007)

    Article  Google Scholar 

  14. Z. Rosenstock, I. Feldman, I. Riess, Solid State Ionics 175, 375 (2004)

    Article  Google Scholar 

  15. S. Laidoudi, A.Y. Bioud, A. Azizi, G. Schmerber, J. Bartringer, S. Barre, A. Dinia, Semicond. Sci. Technol. 28, 115005 (2013)

    Article  Google Scholar 

  16. Y. Nishi, T. Miyata, T. Minami, Thin Solid Films 528, 72 (2013)

    Article  Google Scholar 

  17. T. Serin, S. Gurakar, N. Serin, N. Yildirim, F. Ozyurt Kus, J. Phys. D Appl. Phys. 42, 225108 (2009)

    Article  Google Scholar 

  18. F. Pei, S. Wu, G. Wang, M. Xu, S.Y. Wang, L.Y. Chen, Y. Jia, J. Korean Phys. Soc. 55, 1243 (2009)

    Article  Google Scholar 

  19. L. Schramm, G. Behr, W. Loser, K. Wetzig, J. Phase Equilib. Diff. 26, 605 (2005)

    Article  Google Scholar 

  20. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice-Hall, New Jersey, 2001), p. 89, 42

    Google Scholar 

  21. D. Brandon, W.D. Kaplan, Microstructural characterization of materials, 2nd edn. (Wiley, Sussex, 2008), pp. 63–90

    Book  Google Scholar 

  22. H. Nagai, T. Suzuki, H. Hara, C. Mochizuki, I. Takano, T. Honda, M. Sato, Mater. Chem. Phys. 137, 252 (2012)

    Article  Google Scholar 

  23. P.J. Goodhew, J. Humphreys, R. Beanland, Electron microscopy and analysis, 3rd edn. (Taylor and Francis, London and New York, 2001), p. 46

    Google Scholar 

  24. H.-S. Zhang, J.L. Endrino, A. Anders, Appl. Surf. Sci. 255, 2551 (2008)

    Article  Google Scholar 

  25. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)

    Article  Google Scholar 

  26. B. Balamurugan, B.R. Mehta, Thin Solid Films 396, 90 (2001)

    Article  Google Scholar 

  27. J.P. Hu, D.J. Payne, R.G. Egdell, P.A. Glans, T. Learmonth, K.E. Smith, Phys. Rev. B 77, 155115 (2008)

    Article  Google Scholar 

  28. D.K. Schroder, Semiconductor material and device characterization, 3rd edn. (Wiley, Canada, 2006), p. 10

    Google Scholar 

  29. T. Mahalingam, J.S.P. Chitra, J.P. Chu, H. Moon, H.J. Kwon, Y.D. Kim, J. Mater. Sci. Mater. Electron. 17, 519 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the Department of Science and Technology for their financial support of INSPIRE fellowship for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurpreet Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Mitra, A. & Yadav, K.L. Influence of oxygen pressure on the growth and physical properties of pulsed laser deposited Cu2O thin films. J Mater Sci: Mater Electron 26, 9689–9699 (2015). https://doi.org/10.1007/s10854-015-3636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3636-5

Keywords

Navigation