Skip to main content
Log in

Structural refinement, Raman spectroscopy, optical and electrical properties of (Ba1−xSrx)MoO4 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, structural refinement, Raman spectroscopy, optical and electrical properties of barium strontium molybdate [(Ba1−x Sr x )MoO4] ceramics with different (x) contents (x = 0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; and 1) were synthesized by the solid state reaction method. These ceramics were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, and micro-Raman spectroscopy. The shape of the grains for these ceramics was observed by means of scanning electron microscopy (SEM) images. The optical properties were investigated using ultraviolet–visible (UV–Vis) absorption spectroscopy and photoluminescence (PL) measurements. The dielectric and ferroelectric properties were analyzed by permittivity (εr), loss tangent (tan δ) and polarization versus electric field (P–E) hysteresis loop. XRD patterns, Rietveld refinement, and micro-Raman spectra showed that all ceramics are monophasic with a scheelite-type tetragonal structure. A decreased of lattice parameters and unit cell volume was observed with the increase of Sr2+ ions into BaMoO4 lattice. Rietveld data were employed to model the [BaO8], [SrO8] and [MoO4] clusters in the tetragonal lattices. The SEM images indicate that increased x content promotes a decrease in the grain size and modifications in the shape. UV–Vis spectra indicated a decrease in the optical band gap values with an increase in x content in the (Ba1−x Sr x )MoO4 ceramics. PL emissions exhibit a non-linear behavior to increase or decrease with the increase of Sr2+ ions in the tetragonal lattices, when excited by a wavelength of 350 nm. The PE decreases along with slim hysteresis loop towards higher Sr2+ ions concentration. These effects are correlated with decrease in lattice parameters and c/a ratio in this tetragonal lattice. The microwave dielectric constant and quality factor were measured using the method proposed by Hakki–Coleman. Temperature coefficient and quality factor of these materials were measured by vector network analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Davidson, Spectroscopic Properties of Inorganic and Organometallic Compounds (Royal Society of Chemistry, Great Britain, 1998), pp. 1–303

    Book  Google Scholar 

  2. L.S. Cavalcante, F.M.C. Batista, M.A.P. Almeida, A.C. Rabelo, I.C. Nogueira, N.C. Batista, J.A. Varela, M.R.M.C. Santos, E. Longo, M. Li, Structural refinement, growth process, photoluminescence and photocatalytic properties of (Ba1−x Pr2x/3)WO4 crystals synthesized by the coprecipitation method. RSC Adv. 2, 6438–6454 (2012)

    Article  Google Scholar 

  3. R.C. Pullar, S. Farrah, N.M. Alford, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J. Eur. Ceram. Soc. 27, 1059–1063 (2007)

    Article  Google Scholar 

  4. I.L.V. Rosa, A.P.A. Marques, M.T.S. Tanaka, D.M.A. Melo, E.R. Leite, E. Longo, J.A. Varela, Synthesis, characterization and photophysical properties of Eu3+ doped in BaMoO4. J. Fluoresc. 18, 239–245 (2008)

    Article  Google Scholar 

  5. A.J. Peter, I.B.S. Banu, Synthesis and luminescent properties of Tb3+ activated AWO4 based (A=Ca and Sr) efficient green emitting phosphors. J. Mater. Sci. Mater. Electron. 25, 2771–2779 (2014)

    Article  Google Scholar 

  6. R. Sundaram, K. Nagaraja, Electrical and humidity sensing properties of lead (II) tungstate–tungsten (VI) oxide and zinc(II) tungstate–tungsten(VI) oxide composites. Mater. Res. Bull. 39, 581–590 (2004)

    Article  Google Scholar 

  7. L. You, Y. Cao, Y.F. Sun, P. Sun, T. Zhang, Y. Du, G.Y. Lu, Humidity sensing properties of nanocrystalline ZnWO4 with porous structures. Sensors Actuators B Chem. 161, 799–804 (2012)

    Article  Google Scholar 

  8. D.W. Kim, I.-S. Cho, S.S. Shin, S. Lee, T.H. Noh, D.H. Kim, H.S. Jung, K.S. Hong, Electronic band structures and photovoltaic properties of MWO4 (M=Zn, Mg, Ca, Sr) compounds. J. Solid State Chem. 184, 2103–2107 (2011)

    Article  Google Scholar 

  9. M. Gancheva, A. Naydenov, R. Iordanova, D. Nihtianova, P. Stefanov, Mechanochemically assisted solid state synthesis, characterization, and catalytic properties of MgWO4. J. Mater. Sci. 50, 3447–3456 (2015)

    Google Scholar 

  10. L.S. Cavalcante, E. Moraes, M.A.P. Almeida, C.J. Dalmaschio, N.C. Batista, J.A. Varela, E. Longo, M. Siu Li, J. Andrés, A. Beltrán, A combined theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron 54, 13–25 (2013)

    Article  Google Scholar 

  11. S.M.M. Zawawi, R. Yahya, A. Hassan, H.N.M.E. Mahmud, M.N. Daud, Structural and optical characterization of metal tungstates (MWO4; M=Ni, Ba, Bi) synthesized by a sucrose-templated method. Chem. Cent. J. 7, 80–89 (2013)

    Article  Google Scholar 

  12. M.R.D. Bomio, L.S. Cavalcante, M.A.P. Almeida, R.L. Tranquilin, N.C. Batista, P.S. Pizani, M. Siu Li, J. Andres, E. Longo, Structural refinement, growth mechanism, infrared/Raman spectroscopies and photoluminescence properties of PbMoO4 crystals. Polyhedron 50, 532–545 (2013)

    Article  Google Scholar 

  13. M.A.P. Almeida, L.S. Cavalcante, C. Morilla-Santos, C.J. Dalmaschio, S. Rajagopal, M. Siu Li, E. Longo, Effect of partial preferential orientation and distortions in octahedral clusters on the photoluminescence properties of FeWO4 nanocrystals. Cryst. Eng. Commun. 14, 7127–7132 (2012)

    Article  Google Scholar 

  14. M.M.J. Sadiq, A.S. Nesaraj, Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. J. Nanostruct. Chem. 5, 45–54 (2015)

    Article  Google Scholar 

  15. X. Liu, L. Li, H.M. Noh, J.H. Jeong, K. Jang, D.S. Shin, Controllable synthesis of uniform CaMoO4:Eu 3+, M+(M= Li, Na, K) microspheres and optimum luminescence properties. RSC Adv. 5, 9441–9454 (2015)

    Article  Google Scholar 

  16. V.S. Marques, L.S. Cavalcante, J.C. Sczancoski, A.F.P. Alcântara, M.O. Orlandi, E. Moraes, E. Longo, J.A. Varela, M. Siu Li, M.R.M.C. Santos, Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO4 crystals and their optical properties. Cryst. Growth Des. 10, 4752–4768 (2010)

    Article  Google Scholar 

  17. J. Guo, D. Zhou, L. Wang, H. Wang, T. Shao, Z.M. Qi, X. Yao, Infrared spectra, Raman spectra, microwave dielectric properties and simulation for effective permittivity of temperature stable ceramics AMoO4–TiO2 (A= Ca, Sr). Dalton Trans. 42, 1483–1491 (2013)

    Article  Google Scholar 

  18. A. Priya, E. Sinha, S.K. Rout, Structural, optical and microwave dielectric properties of Ba1−x Sr x WO4 ceramics prepared by solid state reaction route. Solid State Sci. 20, 40–45 (2013)

    Article  Google Scholar 

  19. V.D. Araújo, R.L. Tranquilin, F.V. Motta, C.A. Paskocimas, M.I.B. Bernardi, L.S. Cavalcante, J. Andres, E. Longo, M.R.D. Bomio, Effect of polyvinyl alcohol on the shape, photoluminescence and photocatalytic properties of PbMoO4 microcrystals. Mater. Sci. Semicond. Process. 26, 425–430 (2014)

    Article  Google Scholar 

  20. L.S. Cavalcante, V.M. Longo, J.C. Sczancoski, M.A.P. Almeida, A.A. Batista, J.A. Varela, M.O. Orlandi, E. Longo, M. Siu Li, Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals”. Cryst. Eng. Commun. 14, 853–868 (2012)

    Article  Google Scholar 

  21. B.P. Singh, R.A. Singh, Color tuning in thermally stable Sm3+ activated CaWO4 nanophosphors. New J. Chem. (2015). doi:10.1039/C4NJ01911C

    Google Scholar 

  22. M. Guzik, E. Tomaszewicz, S.M. Kaczmarek, J. Cybińska, H. Fuks, Spectroscopic investigations of Cd0.25Gd0.500.25WO4:Eu3+—a new promising red phosphor. J. Non-Cryst. Solids 356, 1902–1907 (2010)

    Article  Google Scholar 

  23. A.F. Gouveia, J.C. Sczancoski, M.M. Ferrer, A.S. Lima, M.R.M.C. Santos, M. Li, R.S. Santos, E. Longo, L.S. Cavalcante, Experimental and theoretical investigations of electronic structure and photoluminescence properties of β-Ag2MoO4 microcrystals. Inorg. Chem. 53, 5589–5599 (2014)

    Article  Google Scholar 

  24. A. Dias, Theoretical calculations and hydrothermal processing of bawo4 materials under environmentally friendly conditions. J. Solut. Chem. 40, 1126–1139 (2011)

    Article  Google Scholar 

  25. Y. Guo, G. Fan, Z. Huang, J. Sun, L. Wang, T. Wang, J. Chen, Determination of standard molar enthalpies of formation of SrMoO4 micro/nano structures. Thermochim. Acta 530, 116–119 (2012)

    Article  Google Scholar 

  26. G. Bayer, H.-G. Wiedemann, Formation of scheelite (CaWO4) and powellite (CaMoO4) by displacement reactions. Thermochim. Acta 133, 125–130 (1988)

    Article  Google Scholar 

  27. C. Bouzidi, N. Sdiri, A. Boukhachem, H. Elhouichet, M. Féri, Impedance analysis of BaMo1−x W x O4 ceramics. Superlattices Microstruct. 82, 559–573 (2015)

    Article  Google Scholar 

  28. X. He, M. Guan, Z. Li, T. Shang, N. Lian, Q. Zhou, Enhancement of fluorescence from BaMoO4:Pr3+ deep-red-emitting phosphor via codoping Li+ and Na+ ions. J. Am. Ceram. Soc. 94, 2483–2488 (2011)

    Article  Google Scholar 

  29. B.K. Maji, H. Jena, K.V.G. Kutty, Effect of la-substitution on the electrical conductivity of Sr1−x La x MoO4+δ (x = 0 − 0.3) compounds. J. Mater. Eng. Perform. 23, 3126–3132 (2014)

    Article  Google Scholar 

  30. R. Cao, K. Chen, Q. Hu, W. Li, H. Ao, C. Cao, T. Liang, Synthesis and luminescence properties of Sr(1xyz)MoO4:xEu3+, yBi3+, zR+ (R+=Li+, Na+, and K+) phosphors. Adv. Powder Technol. 26, 500–504 (2015)

    Article  Google Scholar 

  31. Y.-S. Cho, Y.-D. Huh, Preparation and optical properties of green-emitting BaMoO4:Tb3+, Na+ nanophosphors for transparent displays. Electron. Mater. Lett. 10, 1185–1189 (2014)

    Article  Google Scholar 

  32. M. Lei, C.X. Ye, S.S. Ding, K. Bi, H. Xiao, Z.B. Sun, D.Y. Fan, H.J. Yang, Y.G. Wang, Controllable route to barium molybdate crystal and their photoluminescence. J. Alloys Compd. 639, 102–105 (2015)

    Article  Google Scholar 

  33. J. Diaz-Algara, J.C. Rendón-Angeles, Z. Matamoros-Veloza, K. Yanagisawa, J.L. Rodriguez-Galicia, J.M. Rivera-Cobo, Single-step synthesis of SrMoO4 particles from SrSO4 and their anti-corrosive activity. J. Alloys Compd. 607, 73–84 (2014)

    Article  Google Scholar 

  34. G. Xing, Y. Li, Y. Li, Z. Wu, P. Sun, Y. Wang, C. Zhao, G. Wu, Morphology-controllable synthesis of SrMoO4 hierarchical crystallites via a simple precipitation method. Mater. Chem. Phys. 127, 465–470 (2011)

    Article  Google Scholar 

  35. C. Zhang, L. Zhang, C. Song, G. Jia, S. Huo, S. Shen, Well-defined barium molybdate hierarchical architectures with different morphologies: controllable synthesis, formation process, and luminescence properties. J. Alloys Compd. 589, 185–191 (2014)

    Article  Google Scholar 

  36. K.K. Aruna, R. Manoharan, Electrochemical hydrogen evolution catalyzed by SrMoO4 spindle particles in acid water. Int. J. Hydrog. Energy 38, 12695–12703 (2013)

    Article  Google Scholar 

  37. A.P.A. Marques, D.M.A. de Melo, E. Longo, C.A. Paskocimas, P.S. Pizani, E.R. Leite, Photoluminescence properties of BaMoO4 amorphous thin films. J. Solid State Chem. 178, 2346–2353 (2005)

    Article  Google Scholar 

  38. A.P.A. Marques, M.T.S. Tanaka, E. Longo, E.R. Leite, I.L.V. Rosa, The role of the Eu3+ concentration on the SrMoO4: Eu phosphor properties synthesis characterization and photophysical studies. J. Fluoresc. 21, 893–899 (2011)

    Article  Google Scholar 

  39. L.S. Cavalcante, J.C. Sczancoski, R.L. Tranquilin, J.A. Varela, E. Longo, M.O. Orlandi, Growth mechanism of octahedron-like BaMoO4 microcrystals processed in microwave-hydrothermal: Experimental observations and computational modeling. Particuology 7, 353–362 (2009)

    Article  Google Scholar 

  40. S. Wannapop, T. Thongtem, S. Thongtem, Characterization of donut-like SrMoO4 produced by microwave-hydrothermal process. J. Nanomater. 2013, 474576–474581 (2013)

    Article  Google Scholar 

  41. Z. Li, J. Du, J. Zhang, T. Mu, Y. Gao, B. Han, J. Chen, J. Chen, Synthesis of single crystal BaMoO4 nanofibers in CTAB reverse microemulsions. Mater. Lett. 59, 64–68 (2005)

    Article  Google Scholar 

  42. Q. Gong, X. Qian, X. Ma, Z. Zhu, Large-scale fabrication of novel hierarchical 3D CaMoO4 and SrMoO4 mesocrystals via a microemulsion-mediated route. Cryst. Growth Des. 6, 1821–1825 (2006)

    Article  Google Scholar 

  43. M. Yoshimura, M. Ohmura, W.-S. Cho, M. Yashima, M. Kakihana, Preparation and luminescence of crystallized Ba1−x Sr x MoO4 solid-solution films by an electrochemical method at room temperature. Jpn. J. Appl. Phys. 36, L1229–L1231 (1997)

    Article  Google Scholar 

  44. C.-T. Xia, V.M. Fuenzalida, R.A. Zarate, Electrochemical preparation of crystallized Ba1−x Sr x MoO4 solid-solution films at room-temperature. J. Alloys Compd. 316, 250–255 (2001)

    Article  Google Scholar 

  45. D.J. Gao, D.Q. Xiao, J. Bi, P. Yu, W. Zhang, G.L. Yu, J.G. Zhu, Electrochemical deposition of Ba1−x Sr x MoO4 thin films at room temperature. MRS Proceedings 755, DD6.3 (2002)

    Article  Google Scholar 

  46. M. Sahu, K. Krishnan, B.K. Nagar, D. Jain, M.K. Saxena, C.G.S. Pillai, S. Dash, Characterization and thermo physical property investigations on Ba1−x Sr x MoO4 (x = 0, 0.18, 0.38, 0.60, 0.81, 1) solid-solutions. J. Nucl. Mater. 427, 323–332 (2012)

    Article  Google Scholar 

  47. I.C. Nogueira, L.S. Cavalcante, P.F.S. Pereira, M.M. de Jesus, J.M. Rivas Mercury, N.C. Batista, M.S. Li, E. Longo, Rietveld refinement, morphology and optical properties of (Ba1−x Sr x )MoO4 crystals. J. Appl. Cryst. 46, 1434–1446 (2013)

    Article  Google Scholar 

  48. V. Nassif, R.E. Carbonio, J.A. Alonso, Neutron diffraction study of the crystal structure of BaMoO4: a suitable precursor for metallic BaMoO3 perovskite. J. Solid State Chem. 146, 266–270 (1999)

    Article  Google Scholar 

  49. C. Bernuy-Lopez, M. Allix, C.A. Bridges, J.B. Claridge, M.J. Rosseinsky, Sr2MgMoO6−δ: structure, phase stability, and cation site order control of reduction. Chem. Mater. 19, 1035–1043 (2007)

    Article  Google Scholar 

  50. B.H. Toby, EXPGUI, a graphical use interphase for GSAS. J. Appl. Crystallogr. 34, 210–221 (2001)

    Article  Google Scholar 

  51. J.C. Sczancoski, L.S. Cavalcante, N.L. Marana, R.O. da Silva, R.L. Tranquilin, M.R. Joya, P.S. Pizani, J.A. Varela, J.R. Sambrano, M. Siu Li, E. Longo, J. Andrés, Electronic structure and optical properties of BaMoO4 powders. Curr. Appl. Phys. 10, 614–624 (2010)

    Article  Google Scholar 

  52. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1993)

    Article  Google Scholar 

  53. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011)

    Article  Google Scholar 

  54. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 41, 653–658 (2008)

    Article  Google Scholar 

  55. P.F.S. Pereira, I.C. Nogueira, E. Longo, E.J. Nassar, I.L.V. Rosa, L.S. Cavalcante, Rietveld refinement and optical properties of SrWO4:Eu3+ powders prepared by the non-hydrolytic sol-gel method. J. Rare Earths 33, 113–128 (2015)

    Article  Google Scholar 

  56. R.F. Gonçalves, L.S. Cavalcante, I.C. Nogueira, E. Longo, M.J. Godinho, J.C. Sczancoski, V.R. Mastelaro, I.M. Pinatti, I.L.V. Rosa, A.P.A. Marques, Rietveld refinement, cluster modelling, growth mechanism and photoluminescence properties of CaWO4:Eu3+ microcrystals. Cryst. Eng. Commun. 17, 1654–1666 (2015)

    Article  Google Scholar 

  57. T.T. Basiev, A.A. Sobol, Y.K. Voronko, P.G. Zverev, Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers. Opt. Mater. 15, 205–216 (2000)

    Article  Google Scholar 

  58. J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.A. Varela, P.S. Pizani, E. Longo, SrMoO4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties. Chem. Eng. J. 140, 632–637 (2008)

    Article  Google Scholar 

  59. T.T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, V.V. Osiko, R.C. Powell, Raman spectroscopy of crystals for stimulated Raman scattering. Opt. Mater. 11, 307–314 (1999)

    Article  Google Scholar 

  60. Q. Gong, X. Qian, H. Cao, W. Du, X. Ma, M. Mo, Novel shape evolution of BaMoO4 microcrystals. J. Phys. Chem. B. 110, 19295–19299 (2006)

    Article  Google Scholar 

  61. S.P. Culver, F.A. Rabuffetti, S. Zhou, M. Mecklenburg, Y. Song, B.C. Melot, R.L. Brutchey, Low-temperature synthesis of AMoO4 (A=Ca, Sr, Ba) scheelite nanocrystals. Chem. Mater. 25, 4129–4134 (2013)

    Article  Google Scholar 

  62. P. Kubelka, F. Munk-Aussig, Ein beitrag zur optik der farbanstriche. Zeit. Fur. Tech. Physik. 12, 593–601 (1931)

    Google Scholar 

  63. M.L. Myrick, M.N. Simcock, M. Baranowski, H. Brooke, S.L. Morgan, J.N. Mccutcheon, The Kubelka-Munk diffuse reflectance formula revisited. Appl. Spectrosc. Rev. 46, 140–165 (2011)

    Article  Google Scholar 

  64. R.A. Smith, Semiconductors, 2nd edn. (Cambridge University Press, London, 1978), p. 434

    Google Scholar 

  65. D. Errandonea, L. Gracia, R. Lacomba-Perales, A. Polian, J.C. Chervin, Compression of scheelite-type SrMoO4 under quasi-hydrostatic conditions: redefining the high-pressure structural sequence. J. Appl. Phys. 113, 123510–123519 (2013)

    Article  Google Scholar 

  66. R. Vali, Electronic properties and phonon spectra of SrMoO4. Comput. Mater. Sci. 50, 2683–2687 (2011)

    Article  Google Scholar 

  67. E. Longo, D.P. Volanti, V.M. Longo, L. Gracia, I.C. Nogueira, M.A.P. Almeida, A.N. Pinheiro, M.M. Ferrer, L.S. Cavalcante, J. Andres, Toward an understanding of the growth of Ag filaments on α-Ag2WO4 and their photoluminescent properties: a Combined experimental and theoretical study. J. Phys. Chem. C 118, 1229–1239 (2014)

    Article  Google Scholar 

  68. L. Gracia, V.M. Longo, L.S. Cavalcante, A. Beltrán, W. Avansi, M.S. Li, V.R. Mastelaro, J.A. Varela, E. Longo, J. Andre, Presence of excited electronic state in CaWO4 crystals provoked by a tetrahedral distortion: an experimental and theoretical investigation. J. Appl. Phys. 110, 043501–043511 (2011)

    Article  Google Scholar 

  69. A.P. de Moura, L.H. de Oliveira, I.L.V. Rosa, C.S. Xavier, P.N. Lisboa-Filho, M.S. Li, F.A. La Porta, E. Longo, J.A. Varela, Structural, optical, and magnetic properties of NiMoO4 nanorods prepared by microwave sintering. Sci. World J. 2015, 315084–315091 (2015)

    Article  Google Scholar 

  70. M.R.D. Bomio, R.L. Tranquilin, F.V. Motta, C.A. Paskocimas, R.M. Nascimento, L. Gracia, J. Andres, E. Longo, Toward understanding the photocatalytic activity of PbMoO4 powders with predominant (111), (100), (011), and (110) facets: a combined experimental and theoretical study. J. Phys. Chem. C 117, 21382–21395 (2013)

    Article  Google Scholar 

  71. J. Zhang, L. Li, W. Zi, L. Zou, S. Gan, G. Ji, Size-tailored synthesis and luminescent properties of three-dimensional BaMoO4, BaMoO4:Eu3+ micron-octahedrons and micron-flowers via sonochemical route. Luminescence 30, 280–289 (2015)

    Article  Google Scholar 

  72. S.S. Ding, M. Lei, H. Xiao, G. Liu, Y.C. Zhang, K. Huang, C. Liang, Y.J. Wang, R. Zhang, D.Y. Fan, H.J. Yang, Y.G. Wang, Morphology evolution and photoluminescence of barium molybdate controlled by poly (sodium-4-styrenesulfonate). J. Alloys Compd. 579, 549–552 (2013)

    Article  Google Scholar 

  73. L. Li, R. Li, W. Zi, S. Gan, Hydrothermal synthesis and luminescent properties of color-tunable Dy3+ doped and Eu3+/Tb3+ co-doped MMoO4 (M=Ca, Sr, Ba) phosphors. Phys. B 458, 8–17 (2015)

    Article  Google Scholar 

  74. P. Jena, S.K. Gupta, V. Natarajan, M. Sahu, N. Satyanarayana, M. Venkateswarlu, Structural characterization and photoluminescence properties of sol–gel derived nanocrystalline BaMoO4:Dy3+. J. Lumin. 158, 203–210 (2015)

    Article  Google Scholar 

  75. S. Cho, Synthesis and luminescence properties of SrMoO4:RE3+ (RE=Eu or Tb) phosphors. J. Korean Phys. Soc. 64, 1529–1534 (2014)

    Article  Google Scholar 

  76. J. Zhang, R. Li, L. Liu, L. Li, L. Zou, S. Gan, G. Ji, Self-assembled 3D sphere-like SrMoO4 and SrMoO4:Ln3+ (Ln=Eu, Sm, Tb, Dy) microarchitectures: Facile sonochemical synthesis and optical properties. Ultrason. Sonochem. 21, 1736–1744 (2014)

    Article  Google Scholar 

  77. C. Shivakumara, R. Saraf, Eu3+ activated SrMoO4 phosphors for white LEDs applications: Synthesis and structural characterization. Opt. Mater. 42, 178–186 (2015)

    Article  Google Scholar 

  78. L. Li, Z. Leng, W. Zi, S. Gan, Hydrothermal synthesis of SrMoO4:Eu3+, Sm3+ phosphors and their enhanced luminescent properties through energy transfer. J. Electron. Mater. 43, 2588–2596 (2014)

    Article  Google Scholar 

  79. V.M. Longo, L.S. Cavalcante, E.C. Paris, J.C. Sczancoski, P.S. Pizani, M. Siu Li, J. Andrés, E. Longo, J.A. Varela, Hierarchical assembly of CaMoO4 nano-octahedrons and their photoluminescence properties. J. Phys. Chem. C 115, 5207–5219 (2011)

    Article  Google Scholar 

  80. Z. Xia, D. Chen, Synthesis and luminescence properties of BaMoO4:Sm3+ phosphors. J. Am. Ceram. Soc. 1401, 1397–1401 (2010)

    Google Scholar 

  81. A.P. de Azevedo Marques, D.M.A. De Melo, C.A. Paskocimas, P.S. Pizani, M.R. Joya, E.R. Leite, E. Longo, Photoluminescent BaMoO4 nanopowders prepared by complex polymerization method (CPM). J. Solid State Chem. 179, 671–678 (2006)

    Article  Google Scholar 

  82. R.T. Lam, G. Blasse, Luminescence of barium molybdate (BaMoO4). J. Chem. Phys. 71, 3549 (1979)

    Article  Google Scholar 

  83. L.S. Cavalcante, M.A.P. Almeida, W. Avansi Jr, R.L. Tranquilin, E. Longo, N.C. Batista, V.R. Mastelaro, M. Siu Li, Cluster coordination and photoluminescence properties of α-Ag2WO4 microcrystals. Inorg. Chem. 51, 10675–10687 (2012)

    Article  Google Scholar 

  84. P. Jena, S.K. Gupta, V. Natarajan, O. Padmaraj, N. Satyanarayana, M. Venkateswarlu, On the photo-luminescence properties of sol–gel derived undoped and Dy3+ ion doped nanocrystalline scheelite type AMoO4 (A=Ca, Sr and Ba). Mater. Res. Bull. 64, 223–232 (2015)

    Article  Google Scholar 

  85. L. Wei, Y. Liu, Y. Lu, T. Wu, Morphology and Photoluminescence of Ba0.5Sr0.5MoO4 powders by a molten salt method. J. Nanomater. 2012, 398582–398587 (2012)

    Article  Google Scholar 

  86. E. Ryu, Y. Huh, Synthesis of hierarchical self-assembled BaMoO4 microcrystals. Bull. Korean Chem. Soc. 29(2), 503–506 (2008)

    Article  Google Scholar 

  87. C. Mao, J. Geng, X. Wu, J. Zhu, Selective synthesis and luminescence properties of self-assembled SrMoO4 superstructures via a facile sonochemical route. J. Phys. Chem. C 114, 1982–1988 (2010)

    Article  Google Scholar 

  88. S. Devi, A.K. Jha, Structural, dielectric and ferroelectric properties of tungsten substituted barium titanate ceramics. Asian J. Chem. 21, S117–S124 (2009)

    Google Scholar 

  89. L. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  Google Scholar 

  90. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  91. K.M. Rabe, M. Dawber, Modern physics of ferroelectrics: essential background. Appl. Phys. 105, 1–30 (2007)

    Article  Google Scholar 

  92. P.D. Hakki, B.W. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  93. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348 (1993)

    Article  Google Scholar 

  94. S.D. Ramarao, S.R. Kiran, V.R.K. Murthy, Structural, lattice vibrational, optical and microwave dielectric studies on Ca1−x Sr x MoO4 ceramics with scheelite structure. Mater. Res. Bull. 56, 71–79 (2014)

    Article  Google Scholar 

  95. S. Kobayashi, Y. Tanaka, Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates. IEEE Trans. Microw. Theory Techol. 28, 1077–1085 (1980)

    Article  Google Scholar 

  96. G.K. Choi, J.R. Kim, S.H. Yoon, K.S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A=Mg, Zn, Mn) AMoO4 compounds. J. Eur. Ceram. Soc. 27, 3063–3067 (2007)

    Article  Google Scholar 

  97. S.H. Yoon, D.W. Kim, S.Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)

    Article  Google Scholar 

  98. D.A. Durilin, O.V. Ovchar, A.G. Belous, Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba1−x (Zn1/2W1/2)O3−x and Ba(Zn1/2−y W1/2)O3−y/2. Inorg. Mater. 47, 313–316 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Indian authors gratefully acknowledge the financial support from DST Fast Track project (F. No. SB/FT/CS-044/2013) Govt. of India. The Brazilian authors acknowledge the financial support of agencies: CNPq (304531/2013-8) and FAPESP (2012/14004-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. K. Rout or L. S. Cavalcante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S.K., Rout, S.K., Tiwari, A. et al. Structural refinement, Raman spectroscopy, optical and electrical properties of (Ba1−xSrx)MoO4 ceramics. J Mater Sci: Mater Electron 26, 8319–8335 (2015). https://doi.org/10.1007/s10854-015-3498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3498-x

Keywords

Navigation