Skip to main content
Log in

Dielectric relaxation and magnetic characteristics of (La1/2Li1/2)(Fe1/2V1/2)O3 multiferroics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study we have synthesized lead-free polycrystalline sample of (La1/2Li1/2)(Fe1/2V1/2)O3 multiferroic by a standard high-temperature solid-state reaction technique. TGA has been carried out to observe the weight loss of the material with rise in temperature. The formation of the material has been confirmed by preliminary structural analysis using X-ray diffraction data. The dielectric permittivity (constant), loss tangent, impedance, and electric modulus of silver coated pellet sample were measured in a wide frequency range (1 kHz–1 MHz) at different temperatures (30–375 °C). The Nyquist plots show the contributions of grain and grain boundary effect in the impedance characteristics of the material. The bulk resistance calculated from the impedance data decreases with increase in temperature showing negative temperature coefficient of resistance (NTCR)-type behaviour of the material. The frequency dependence of ac conductivity at different temperature indicates that the material obeys Jonscher’s universal power law. The nature of variation of dc conductivity follows Arrhenius law. Detailed studies of modulus spectrum suggest that the material exhibits non-Debye type of relaxation mechanism, which is consistent with the impedance data. The room temperature magnetic (M-H) and ferroelectric (P-E) loops confirm the ferromagnetic and ferroelectric ordering present in the prepared material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z.W. Chen, J.S. Lee, T. Huang, C.M. Lin, Solid State Commun. 152, 1613 (2012)

    Article  Google Scholar 

  2. G.L. Song, H.X. Zhang, T.X. Wang, H.G. Yang, F.G. Chang, J. Magn. Magn. Mater. 324, 2121 (2012)

    Article  Google Scholar 

  3. R. Das, K. Mandal, J. Magn. Magn. Mater. 324, 1913 (2012)

    Article  Google Scholar 

  4. P. Priyadharshini, A. Pradeep, B. Sathyamoorty, G. Chandrasekaran, J. Phys. Chem. Solids 75, 797 (2014)

    Article  Google Scholar 

  5. S.K. Pradhan, B.K. Roul, Phys. B 407, 2527 (2012)

    Article  Google Scholar 

  6. S. Acharya, P.K. Chakraborti, Solid State Commun. 150, 1234 (2010)

    Article  Google Scholar 

  7. S. Acharya, A.K. Deb, P.K. Chakraborti, Mater. Lett. 65, 1280 (2011)

    Article  Google Scholar 

  8. L.J. Berchmans, R. Sindhu, S. Angappan, C.O. Augustin, J. Mater. Process. Technol. 207, 301 (2008)

    Article  Google Scholar 

  9. S. Mohanty, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. (2014). doi:10.1007/s10854-014-1706-8

    Google Scholar 

  10. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswamy, J. Mater. Sci. Mater. Electron. (2015). doi:10.1007/s10854-015-3255-1

    Google Scholar 

  11. C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci. Mater. Electron. (2014). doi:10.1007/s10854-014-1844-z

    Google Scholar 

  12. B. Park, An Interactive Powder Diffraction Data Interpretations and Indexing Program Version 2.1, E. WU School of Physical Sciences, Flinders University of South Australia, SA 5042

  13. N. Kumar, A. Ghose, R.N.P. Choudhary, Mater. Chem. Phys. 130, 381 (2011)

    Article  Google Scholar 

  14. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, J. Alloys Compd. 540, 267 (2012)

    Article  Google Scholar 

  15. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  16. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)

    Article  Google Scholar 

  17. B.K. Barick, R.N.P. Choudhary, D.K. Pradhan, Mater. Chem. Phys. 132, 1007 (2012)

    Article  Google Scholar 

  18. S.K. Barik, R.N.P. Choudhary, P.K. Mahapatra, J. Alloys Comp. 459, 35 (2008)

    Article  Google Scholar 

  19. J.R. Macdonald, Solid State Ion. 13, 147 (1984)

    Article  Google Scholar 

  20. B. Pati, R.N.P. Choudhary, P.R. Das, J. Alloys Comp. 579, 218 (2013)

    Article  Google Scholar 

  21. N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid State Ion. 179, 689 (2008)

    Article  Google Scholar 

  22. P. Kumar, B.P. Sing, T.P. Sinha, Z.K. Sing, Solid State Sci. 13, 2060 (2011)

    Article  Google Scholar 

  23. S.K. Barik, R.N.P. Choudhary, P.K. Mahapatra, Appl. Phys. A 88, 217 (2007)

    Article  Google Scholar 

  24. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, Curr. Appl. Phys. 13, 1880 (2013)

    Article  Google Scholar 

  25. D.K. Mahato, A. Dutta, T.P. Sinha, Phys. B 406, 2703 (2011)

    Article  Google Scholar 

  26. F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem. 78, 639 (1974)

    Article  Google Scholar 

  27. R. Padhee, P.R. Das, B.N. Parida, S. Behera, R.N.P. Choudhary, Curr. Appl. Phys. 13, 1014 (2013)

    Article  Google Scholar 

  28. D.K. Mahato, T.P. Sinha, J. Alloys Comp. 634, 246 (2015)

    Article  Google Scholar 

  29. B.N. Parida, P.R. Das, R. Padhee, D. Suara, A. Misra, J. Rout, R.N.P. Choudhary, Mater. Res. Bull. 61, 544 (2015)

    Article  Google Scholar 

  30. H. Kevin, B. Chatterjee, G.D. Dwivedia, A. Barmanc, H.D. Yangb, S. Chatterjee, Solid State Commun. 152, 557 (2012)

    Article  Google Scholar 

  31. Z.H. Chi, H. Yang, S.M. Feng, F.Y. Li, R.C. Yu, C.Q. Jin, J. Magn. Magn. Mater. 310, 358 (2007)

    Article  Google Scholar 

  32. V. Singh, S. Sharma, M. Kumar, R.K. Kotnala, R.K. Dwivedi, J. Magn. Magn. Mater. 349, 264 (2014)

    Article  Google Scholar 

  33. K.S. Nalwa, A. Garg, A. Upadhaya, Mater. Lett. 62, 878 (2008)

    Article  Google Scholar 

  34. D.C. Jia, J.H. Xu, H. Ke, W. Wang, Y. Zhou, J. Eur. Ceram. Soc. 29, 3099 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

We are thankful to AICTE for sanctioning the project [No.: 8023/RID/RPS-32/(POLICY-III)(NER)/2011-12] for experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrat Kumar Barik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, S., Barik, S.K. & Choudhary, R.N.P. Dielectric relaxation and magnetic characteristics of (La1/2Li1/2)(Fe1/2V1/2)O3 multiferroics. J Mater Sci: Mater Electron 26, 8199–8206 (2015). https://doi.org/10.1007/s10854-015-3481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3481-6

Keywords

Navigation