Skip to main content
Log in

Hydrothermal synthesis of ternary ZnXCd1−XS–graphene and its photoelectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Composition-tunable ZnXCd1−XS–graphene ternary composites were synthesized via a one-step hydrothermal method with cadmium acetate as cadmium precursor, zinc acetate as zinc precursor, thiourea as sulfur precursors and graphene oxide as support. The molar ratio of Zn and Cd in the composites was controlled by adjusting the relative amounts of the starting materials, and the products were characterized by X-ray diffraction and scanning electron microscope. The photoelectric properties of ZnXCd1−XS–graphene composites with different Zn/Cd ratios were evaluated by transient photocurrent response and three-electrode cyclic voltammetry, and the results show that the photocurrent density and the specific electrochemical capacitance of ZnXCd1−XS–graphene increase gradually with the increase of the Zn/Cd ratio and reach the maximum at the Zn/Cd radio of 0.8:0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.X. Wang, J. Li, W.S. Zhang, S. Guo, Y.Y. Zhang, B.S. Zou, R.B. Liu, Synthesis and characterization of zinc sulfide nanobelts with periodically modulated thickness. Mater. Lett. 132, 224 (2014)

    Article  Google Scholar 

  2. H. Behera, G. Mukhopadhyay, Tailoring the structural and electronic properties of a graphene-like ZnS monolayer using biaxial strain. J. Phys. D Appl. Phys. 47, 075302 (2014)

    Article  Google Scholar 

  3. M. Wang, X. Shao, W.Z. Li, H.Y. Li, J. Yin, F. Liu, Hydrothermal synthesis of urchin-like reduced graphene oxide–CdS and its electrochemical property. J. Alloys Compd. 596, 1 (2014)

    Article  Google Scholar 

  4. Y. Lei, F.F. Chen, R. Li, J. Xu, A facile solvothermal method to produce graphene-ZnS composites for superior photoelectric applications. Appl. Surf. Sci. 308, 206 (2014)

    Article  Google Scholar 

  5. A. Jaiswal, A. Chattopadhyay, S.S. Ghosh, Functional chitosan nanocarriers for potential applications in gene therapy. Mater. Lett. 68, 261 (2012)

    Article  Google Scholar 

  6. H. Wei, X.L. Ren, Z.Y. Han, T.T. Li, Y.J. Su, L.M. Wei, F.S. Cong, Y.F. Zhang, Facile one-pot synthesis and band gap calculations of ZnXCd1−XS nanorods. Mater. Lett. 102–103, 94 (2013)

    Article  Google Scholar 

  7. H. Alehdaghi, M. Arandi, M. Olaei, A. Irajizad, N. Taghavinia, Facile synthesis of gradient alloyed ZnXCd1−XS nanocrystals using a microwave-assisted method. J. Alloys Compd. 586, 380 (2014)

    Article  Google Scholar 

  8. M.S. Hossain, M.A. Islam, Q. Huda, M.M. Aliyu, T. Razykov, M.M. Alam, Z.A. AlOthman, K. Sopian, N. Amin, Growth optimization of ZnXCd1−XS thin films by radio frequency magnetron co-sputtering for solar cell applications. Thin Solid Films 548, 202 (2013)

    Article  Google Scholar 

  9. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008)

    Article  Google Scholar 

  10. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  11. Y. Lei, R. Li, F.F. Chen, J. Xu, Hydrothermal synthesis of graphene–CdS composites with improved photoelectric characteristics. J. Mater. Sci. Mater. Electron. 25, 3057 (2014)

    Article  Google Scholar 

  12. M. Sookhakian, Y.M. Amin, W.J. Basirun, Hierarchically ordered macro-mesoporous ZnS microsphere with reduced graphene oxide supporter for a highly efficient photodegradation of methylene blue. Appl. Surf. Sci. 283, 668 (2013)

    Article  Google Scholar 

  13. Q.J. Xiang, J.G. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782 (2012)

    Article  Google Scholar 

  14. E. Antolini, Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl. Catal. B Environ. 123, 52 (2012)

    Article  Google Scholar 

  15. S.J. Ding, J.S. Chen, D.Y. Luan, F.Y.C. Boey, S. Madhavi, X.W. Lou, Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chem. Commun. 47, 5780 (2011)

    Article  Google Scholar 

  16. A. Schuchardt, T. Braniste, Y.K. Mishra, M. Deng, M. Mecklenburg, M.A. Stevens-Kalceff, S. Raevschi, K. Schulte, L. Kienle, R. Adelung, I. Tiginyanu, Three-dimensional Aerographite–GaN hybrid networks: single step fabrication of porous and mechanically flexible materials for multifunctional applications. Sci. Rep. 5, 8839 (2015)

    Article  Google Scholar 

  17. Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Wille, O. Lupan, R. Adelung, Versatile fabrication of complex shaped metal oxide nano-microstructures and their interconnected networks for multifunctional applications. KONA Powder Part. J. 31, 92 (2014)

    Article  Google Scholar 

  18. Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S.N. Gorb, R. Adelung, Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach. Part. Part. Syst. Charact. 30, 775 (2013)

    Article  Google Scholar 

  19. M. Mecklenburg, A. Schuchardt, Y.K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle, K. Schulte, Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Adv. Mater. 24, 3486 (2012)

    Article  Google Scholar 

  20. J. Zhang, J.G. Yu, Y.M. Zhang, Q. Li, J.R. Gong, Visible-light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11, 4774 (2011)

    Article  Google Scholar 

  21. C. Botas, P. Álvarez, P. Blanco, M. Granda, C. Blanco, R. Santamaría, L. J. Romasanta, R. Verdejo, M. A. López-Manchado, R. Menéndez, Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65, 156 (2013)

    Article  Google Scholar 

  22. J.L. Yan, G.J. Chen, J. Cao, W. Yang, B.H. Xie, M.B. Yang, Functionalized graphene oxide with ethylenediamine and 1,6-hexanediamine. New Carbon Mater. 27, 370 (2012)

    Article  Google Scholar 

  23. D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, R. Adelung, Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors. Adv. Mater. 26, 1541 (2014)

    Article  Google Scholar 

  24. Y.K. Mishra, V.S.K. Chakravadhanula, V. Hrkac, S. Jebril, D.C. Agarwal, S. Mohapatra, D.K. Avasthi, L. Kienle, R. Adelung, Crystal growth behaviour in Au–ZnO nanocomposite under different annealing environments and photoswitchability. J. Appl. Phys. 112, 064308 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China No. 51204129.

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Chen, F., Xu, J. et al. Hydrothermal synthesis of ternary ZnXCd1−XS–graphene and its photoelectric properties. J Mater Sci: Mater Electron 26, 7200–7204 (2015). https://doi.org/10.1007/s10854-015-3345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3345-0

Keywords

Navigation