Skip to main content
Log in

Facile hydrothermal synthesis, formation mechanism, and characterization of In(OH)3 nanostructures for preparation of In2O3 nanoparticles using novel starting reagents

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, using the hydrothermal route, In(OH)3 nanostructures were synthesized by the reaction of In(NO3)3·5H2O, ethylenediamine, and hydrazine hydrate. According to SEM results, ethylenediamine and hydrazine can control the particle growth and play an important role in formation of Indium hydroxide nanostructures. The morphology and microstructure of the obtained products were characterized by X-ray diffraction patterns, energy-dispersive X-ray spectroscopy, fourier transformed infrared spectrum, UV–visible spectrum and scanning electron microscopy. Furthermore, by calcinating In(OH)3 at 400 °C for 2 h in air, In2O3 nanoparticles were prepared. Then, the efficiency of In2O3 nanoparticles as a photocatalyst for the decolorization of methylene blue using visible light irradiation has been evaluated .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.V. Kityk, Q.S. Liu, Z.Y. Sun, J.Y. Fang, J. Phys. Chem. B 110, 8219 (2006)

    Article  Google Scholar 

  2. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, 123 (1986)

    Article  Google Scholar 

  3. M. Epifani, E. Comini, J. Arbiol, E. Pellicer, P. Siciliano, G. Faglia, J.R. Morante, J. Phys. Chem. C 111, 13967 (2007)

    Article  Google Scholar 

  4. C. Li, M. Curreli, H. Lin, B. Lei, F.N. Ishikawa, R. Datar, R.J. Cote, M.E. Thompson, C. Zhou, J. Am. Chem. Soc. 127, 12484 (2005)

    Article  Google Scholar 

  5. A. Gurlo, N. Barsan, U. Weimar, M. Ivanovskaya, A. Taurino, P. Siciliano, Chem. Mater. 15, 4377 (2003)

    Article  Google Scholar 

  6. K. Soulantica, L. Erades, M. Sauvan, F. Senocq, A. Maisonnat, B. Chaudret, Adv. Funct. Mater. 13, 553 (2003)

    Article  Google Scholar 

  7. C.Y. Wang, M. Ali, T. Kups, C.C. Rohlig, V. Cimalla, T. Stauden, Sens. Actuators B 130, 589 (2008)

    Article  Google Scholar 

  8. J. Tamaki, C. Naruo, Y. Yamamoto, M. Matsuoka, Sens. Actuators B 83, 190 (2002)

    Article  Google Scholar 

  9. D.H. Zhang, Z.Q. Liu, C. Li, T. Tang, X.L. Liu, S. Han, B. Lei, C.W. Zhou, Nano Lett. 4, 1919 (2004)

    Article  Google Scholar 

  10. Z.X. Cheng, X.B. Dong, Q.Y. Pan, J.C. Zhang, X.W. Dong, Mater. Lett. 60, 3137 (2006)

    Article  Google Scholar 

  11. C.L. Chen, D.R. Chen, X.L. Jiao, C.Q. Wang, Chem. Commun. 14, 4632 (2006)

    Article  Google Scholar 

  12. P. Nguyen, H.T. Ng, T. Yamada, M.K. Smith, J. Li, J. Han, M. Meyyappan, Nano Lett. 4, 651 (2004)

    Article  Google Scholar 

  13. C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han, C.W. Zhou, Appl. Phys. Lett. 82, 1613 (2003)

    Article  Google Scholar 

  14. M. Curreli, C. Li, Y.H. Sun, B. Lei, M.A. Gundersen, M.E. Thompson, C.W. Zhou, J. Am. Chem. Soc. 127, 6922 (2005)

    Article  Google Scholar 

  15. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, Adv. Mater. 16, 65 (2004)

    Article  Google Scholar 

  16. Y.P. Fang, X.G. Wen, S.H. Yang, Angew. Chem. Int. Ed. 45, 4655 (2006)

    Article  Google Scholar 

  17. Y.B. Li, Y. Bando, D. Golberg, Adv. Mater. 15, 581 (2003)

    Article  Google Scholar 

  18. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001)

    Article  Google Scholar 

  19. C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, L.D. Zhang, Adv. Mater. 13, 1330 (2001)

    Article  Google Scholar 

  20. H.Q. Yang, R.G. Zhang, H.X. Dong, J. Yu, W.Y. Yang, D.C. Chen, Cryst. Growth Des. 8, 3154 (2008)

    Article  Google Scholar 

  21. S. Avivi, Y. Mastai, A. Gedanken, Chem. Mater. 12, 1229 (2000)

    Article  Google Scholar 

  22. W.S. Seo, H.H. Jo, K. Lee, J.T. Park, Adv. Mater. 15, 795 (2003)

    Article  Google Scholar 

  23. Q.S. Liu, W.G. Lu, A.H. Ma, J.K. Tang, J. Lin, J.Y. Fang, J. Am. Chem. Soc. 127, 5276 (2005)

    Article  Google Scholar 

  24. Q. Tang, W.J. Zhou, W. Zhang, S.M. Ou, K. Jiang, W.C. Yu, Y.T. Qian, Cryst. Growth Des. 5, 147 (2005)

    Article  Google Scholar 

  25. C.H. Lee, M. Kim, T. Kim, A. Kim, J. Paek, J.W. Lee, S.-Y. Choi, K. Kim, J.-B. Park, K. Lee, J. Am. Chem. Soc. 128, 9326 (2006)

    Article  Google Scholar 

  26. X.H. Liu, L.B. Zhou, R. Yi, N. Zhang, R.R. Shi, G.H. Gao, G.Z. Qiu, J. Phys. Chem. C 112, 18426 (2008)

    Article  Google Scholar 

  27. D.W. Chu, Y. Masuda, T. Ohji, K. Kato, Langmuir 26, 14814 (2010)

    Article  Google Scholar 

  28. X. Wang, Y.D. Li, J. Am. Chem. Soc. 124, 2880 (2002)

    Article  Google Scholar 

  29. Z.G. Lu, Y.G. Tang, L.M. Chen, Y.D. Li, J. Cryst. Growth 266, 539 (2004)

    Article  Google Scholar 

  30. J.F. Liu, Q.H. Li, T.H. Wang, Y.D. Li, Angew. Chem. Int. Ed. 43, 5048 (2004)

    Article  Google Scholar 

  31. H. Yang, Z. Yang, H. Liang, L. Liu, J. Guo, Y. Yang, Mater. Lett. 64, 1418 (2010)

    Article  Google Scholar 

  32. S. Liu, Y. Cai, X. Cai, H. Li, F. Zhang, Q. Mu, Y. Liu, Y. Wang, Appl. Catal. A Gen. 453, 45 (2013)

    Article  Google Scholar 

  33. S. Liu, Y. Liu, Q. Mu, F. Zhang, H. Li, Y. Wang, Appl. Phys. A Mater. 111, 1229 (2013)

    Article  Google Scholar 

  34. Q. Mu, Y. Wang, J. Alloys compd. 509, 2060 (2011)

    Article  Google Scholar 

  35. M. Mousavi-Kamazani, M. Salavati-Niasari, M. Sadeghinia, Mater. Lett. 142, 145 (2015)

    Article  Google Scholar 

  36. M. Salavati-Niasari, S. Alizadeh, M. Mousavi-Kamazani, N. Mir, O. Rezaei, E. Ahmadi, J. Clust. Sci. 24, 1181 (2013)

    Article  Google Scholar 

  37. S. Arora, M.L. Singla, P. Kapoor, Mater. Chem. Phys. 114, 107 (2009)

    Article  Google Scholar 

  38. H. Zhao, H. Dong, L. Zhang, X. Wang, H. Yang, Mater. Chem. Phys. 130, 921 (2011)

    Article  Google Scholar 

  39. M. Mousavi-Kamazani, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, M. Goudarzi, Mater. Lett. 145, 99 (2015)

    Article  Google Scholar 

  40. Y.Y. Zhang, J.P. Hu, B.A. Bernevig, X.R. Wang, X.C. Xie, W.M. Liu, Phys. Rev. Lett. 102, 106401 (2009)

    Article  Google Scholar 

  41. W. Wu, Y.H. Chen, H.S. Tao, N.H. Tong, W.M. Liu, Phys. Rev. B 82, 245102 (2010)

    Article  Google Scholar 

  42. A.C. Ji, X.C. Xie, W.M. Liu, Phys. Rev. Lett. 99, 183602 (2007)

    Article  Google Scholar 

  43. M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, Ultrason. Sonochem. 23, 246 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chemistry Research Center at Islamic Azad University Arak.

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ramezani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarghami, Z., Ramezani, M. & Maddahfar, M. Facile hydrothermal synthesis, formation mechanism, and characterization of In(OH)3 nanostructures for preparation of In2O3 nanoparticles using novel starting reagents. J Mater Sci: Mater Electron 26, 5884–5891 (2015). https://doi.org/10.1007/s10854-015-3157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3157-2

Keywords

Navigation