Skip to main content
Log in

Structural and optical properties of silica capped ZnS:Mn quantum dots

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, the structural and optical properties of Silica capped ZnS:Mn quantum dots (QDs) has been reported. Chemical precipitation technique was used to form the core–shell nanostructures. The results indicate that the Silica capped ZnS:Mn QDs has cubic Zinc Blende structure and its grain size is about 2 nm as demonstrated by X-ray diffraction (XRD). Transmission electron microscopy images showed that the presence of Silica capping on ZnS:Mn QDs can prevent their agglomeration by cluster formation and their particle size (2–3 nm) well matches with XRD results. The selected area diffraction pattern shows a set of sharp rings corresponding to the (111), (220) and (311) lattice planes of the cubic phase of ZnS which proves the polycrystalline behaviour. Band gap studies were done by UV–visible spectroscopy and presence of Silica have been confirmed by EDAX and FTIR analysis. Photoluminescence studies shows emission wavelength as well as intensity to be tunable with Silica capping. As Silica capped ZnS:Mn QDs can control various parameters of ZnS:Mn, they are suitable material for specific kind of tunable optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 404, 59 (2000)

    Article  Google Scholar 

  2. S. Kim, B. Fisher, H. Eisler, M. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003)

    Article  Google Scholar 

  3. L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Nat. Mater. 2, 382 (2003)

    Article  Google Scholar 

  4. B. Sang, M. Konagai, Jpn. J. Appl. Phys. 35, 602 (1996)

    Article  Google Scholar 

  5. L. Bahadur, N.T. Rao, J. Photochem. Photobiol. A: Chem. 91, 233 (1995)

    Article  Google Scholar 

  6. Z. Hu, S. Chen, S. Peng, J. Colloid Interface Sci. 182, 457 (1996)

    Article  Google Scholar 

  7. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70, 2230 (1997)

    Article  Google Scholar 

  8. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)

    Article  Google Scholar 

  9. H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang, Adv. Mater. 14, 158 (2001)

    Article  Google Scholar 

  10. J. Ouyang, M. Vincent, D. Kingston, P. Descours, T. Boivineau, M.B. Zaman, X. Wu, K. Yu, J. Phys. Chem. C 113, 5193 (2009)

    Article  Google Scholar 

  11. V. Wood, J.E. Halpert, M.J. Panzer, M.G. Bawendi, V. Bulovic, Nano Lett. 9, 2367 (2009)

    Article  Google Scholar 

  12. Y. Fang, S. Chu, H. Chen, P. Kao, I. Chen, C. Hwang, J. Electrochem. Soc. 156, K55 (2009)

    Article  Google Scholar 

  13. T.P. Surkova, V.R. Galakhov, E.Z. Kurmaev, Low Temp. Phys. 35, 79 (2009)

    Article  Google Scholar 

  14. R.N. Bhargava, D. Gallagher, Phys. Rev. Lett. 72, 416 (1994)

    Article  Google Scholar 

  15. M.M. Rashad, D.A. Rayan, K. El-Barawy, J. Phys. Conf. Ser. 200, 072077 (2010)

    Article  Google Scholar 

  16. J. Yang, L. Fan, J. Cao, D. Han, M. Wei, L. Yang, B. Feng, B. Wang, H. Fu, S. Ge, J. Mater. Sci. 24, 1955 (2013)

    Google Scholar 

  17. R. Sahraei, A. Daneshfar, A. Goudarzi, S. Abbasi, M.H. Majles Ara, F. Rahimi, J. Mater. Sci. 24, 260 (2013)

    Google Scholar 

  18. W. Vogel, P.H. Borse, N. Deshmukh, S.K. Kulkarni, Langmuir 16, 2032 (2000)

    Article  Google Scholar 

  19. N. Karar, H. Chander, S.M. Shivaprasad, Appl. Phys. Lett. 85, 5058 (2004)

    Article  Google Scholar 

  20. D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, B. Dong, Nanoscale Res. Lett. 4, 78 (2009)

    Article  Google Scholar 

  21. A.A. Ashkarran, Mater Sci in Semicond. Process. 17, 1 (2014)

    Article  Google Scholar 

  22. S. Sen, C.S. Solanki, P. Sharma, J. Lumin. 145, 669 (2014)

    Article  Google Scholar 

  23. A. Jain, S. Panwar, T.W. Kang, H.C. Jeon, S. Kumar, R.K. Choubey, J. Mater. Sci 25, 1716 (2014)

    Google Scholar 

  24. H.S. Bhatti, S. Kumar, K. Singh, Kavita, R.K. Choubey, Russ. J. Phys. Chem 88, 1166 (2014)

    Article  Google Scholar 

  25. D. Haranath, H. Chander, N. Bhalla, P. Sharma, K.N. Sood, Appl. Phys. Lett. 86, 201904 (2005)

    Article  Google Scholar 

  26. D. Haranath, N. Bhalla, H. Chander, Rashmi, M. Kar, R. Kishore, J. Appl. Phys. 96, 7600 (2004)

    Article  Google Scholar 

  27. B. Steitz, Y. Axmann, H. Hofmann, A. Petri-Fink, J. Lumin. 128, 92 (2008)

    Article  Google Scholar 

  28. R. Thielsch, T. B¨ohme, H. B¨ottcher, Phys. Status Solidi (A) 155, 157 (1996)

    Article  Google Scholar 

  29. M. Sharma, T. Jain, S. Singh, O.P. Pandey, AIP Adv. 2, 012183 (2012)

    Article  Google Scholar 

  30. N. Karar, F. Singh, B.R. Mehta, J. Appl. Phys. 95, 656 (2004)

    Article  Google Scholar 

  31. M.L. Steigerwald, L.E. Brus, Acc. Chem. Res. 23, 183 (1990)

    Article  Google Scholar 

  32. B.S. RemadeviI, R. Raveendran, A.V. Vaidyan, Pramana, J. Phys. 68(4), 679 (2007)

    Google Scholar 

  33. I. Ahemen, O. Meludu, E. Odoh, Br. J. Appl. Sci. Technol. 3(4), 1228 (2013)

    Article  Google Scholar 

  34. J. Alaria, P. Turek, M. Bernard, M. Bouloudenine, A. Berbadj, N. Brihi, G. Schmerber, S. Colis, A. Dinia, J. Magn. Mater. 286, 297 (2005)

    Article  Google Scholar 

  35. J.H. Jeong, H. Kyoung, J. Phys. Chem. 79, 075413 (2009)

    Google Scholar 

  36. B. Staurt, Infrared Spectroscopy: Fundamentals and Applications (Wiley, New York, 2004)

    Book  Google Scholar 

Download references

Acknowledgments

This research was supported by Leading Foreign Research Institute Recruitment Program through the National Research of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (No.2014-039452). One of the author R. K. Choubey is thankful to Department of Science and Technology, Science and Engineering Research Board, New Delhi for the financial support (Grant No. SR/FTP/PS-038/2012) and Defence Institute of Advanced Technology, Girinagar, Pune for the financial support (Grant No. DAIT/F/REG(G)/BS/Proj/2014/2). One of the author is also thankful to the Department of Science (DST), New Delhi, India for supporting the part of this research work (vide Project No. SR/FTP/PS-69/2008), dated 15/1/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kant Choubey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Jeon, H.C., Kang, T.W. et al. Structural and optical properties of silica capped ZnS:Mn quantum dots. J Mater Sci: Mater Electron 26, 3939–3946 (2015). https://doi.org/10.1007/s10854-015-2928-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2928-0

Keywords

Navigation