Skip to main content
Log in

Spray deposited Cu2ZnSnS4 nanostructured absorber layer: a promising candidate for solar cell applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4 (CZTS) absorber layers have been deposited via a spray pyrolysis technique without sulfurization process. Spray precursor solutions were prepared with different zinc to tin ratios, and the effects on film growth, structural, compositional, morphological, optical and electrical properties were investigated. The formation of kesterite structure with (112), (220) and (116) planes in the films was confirmed using X-ray diffraction measurements. AFM analysis revealed a smooth, compact and crack-free morphology. The estimated absorption coefficient was close to 105 cm−1 in the visible region for all CZTS films, and the values obtained for the optical band gap energy of the films were between 1.30 and 1.46 eV. The electrical studies showed that all these samples had a p-type conductivity, and the free hole density and mobility reduced with increasing the Zn/Sn molar ratio compatible with the shifts in the transmittance and reflectance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Kaelin, D. Rudmann, F. Kurdesau, H. Zogg, T. Meyer, A.N. Tiwari, Thin Solid Films 480, 486 (2005)

    Article  Google Scholar 

  2. Y. Hiral, Y. Kurokawa, A. Yamada, Jpn. J. Appl. Phys. 53, 3420 (2014)

    Google Scholar 

  3. S.R. Taylor, S.M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell Scientific Publication, Oxford, 1985), p. 1

    Google Scholar 

  4. Y.X. Zhao, C. Burda, Energy Environ. Sci. 5, 5564 (2012)

    Article  Google Scholar 

  5. T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanagi, H. Katagiri, Jpn. J. Appl. Phys. 1(44), 783 (2005)

    Article  Google Scholar 

  6. A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kotschau, S. Schorr, H.W. Schoke, Thin Solid Films 517, 2524 (2009)

    Article  Google Scholar 

  7. S.M. Pawar, A.V. Moholkar, I.K. Kim, S.W. Shin, J.H. Moon, J.I. Rhee, J.H. Kim, Curr. Appl. Phys. 10, 565 (2010)

    Article  Google Scholar 

  8. K. Moriya, K. Tanaka, H. Uchiki, J. Appl. Phys. 47, 602 (2008)

    Article  Google Scholar 

  9. K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 93, 583 (2009)

    Article  Google Scholar 

  10. N.M. Shinde, D.P. Dubal, D.S. Dhawale, C.D. Lokhande, J.H. Kim, J.H. Moon, Mater. Res. Bull. 47, 302 (2012)

    Article  Google Scholar 

  11. J.J. Scragg, P.J. Dale, L.M. Peter, Electrochem. Commun. 10, 639 (2008)

    Article  Google Scholar 

  12. C.P. Chan, H. Lam, C. Surya, Sol. Energy Mater. Sol. Cells 94, 207 (2010)

    Article  Google Scholar 

  13. J.J. Scragg, P.J. Dale, L.M. Peter, Thin Solid Films 517, 2481 (2009)

    Article  Google Scholar 

  14. N. Nakayama, K. Ito, Appl. Surf. Sci. 92, 171 (1996)

    Article  Google Scholar 

  15. Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja, Sol. Energy Mater. Sol. Cells 93, 1230 (2009)

    Article  Google Scholar 

  16. Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja, Phys. Status Solidi A 207, 149 (2010)

    Article  Google Scholar 

  17. T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo, S. Kuwabatade, T. Torimoto, J. Mater. Chem. 20, 5319 (2010)

    Article  Google Scholar 

  18. M. Espindola-Rodriguez, M. Placidi, O. Vigil-Galán, V. Izquierdo-Roca, X. Fontané, A. Fairbrother, D. Sylla, E. Saucedo, A. Pérez-Rodríguez, Thin Solid Films 535, 67 (2013)

    Article  Google Scholar 

  19. N.M. Shinde, R.J. Deokate, C.D. Lokhande, J. Anal. Appl. Pyrolysis 100, 12 (2013)

    Article  Google Scholar 

  20. K. Tanaka, M. Kato, H. Uchiki, J. Alloys Compd. 616, 492 (2014)

    Article  Google Scholar 

  21. M. Abusina, H. Moutinho, M. Al-Jassim, C. Dehart, M. Matin, J. Mater. Sci. Mater. Electron. 43, 3145 (2014)

    Article  Google Scholar 

  22. W. Schafer, R. Nitsche, Mater. Res. Bull. 9, 645 (1974)

    Article  Google Scholar 

  23. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Exp. 1, 041201 (2008)

    Article  Google Scholar 

  24. A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Köts-chau, H.W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, A. Kirbs, Thin Solid Films 517, 2511 (2009)

    Article  Google Scholar 

  25. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films 517, 2455 (2009)

    Article  Google Scholar 

  26. C. Platzer-Björkman, J. Scragg, H. Flammersberger, T. Kubart, M. Edoff, Sol. Energy Mater. Sol. Cells 98, 110 (2012)

    Article  Google Scholar 

  27. P.K. Manoj, B. Joseph, V.K. Vaidyan, D. Sumangala Devi Amma, Ceram. Int. 33, 273 (2007)

    Article  Google Scholar 

  28. F. Demichelis, G. Kaniadakis, A. Tagliaferro, E. Tresso, Appl. Opt. 26, 1737 (1987)

    Article  Google Scholar 

  29. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1971)

    Google Scholar 

  30. M.A. Butler, J. Appl. Phys. 48, 1914 (1977)

    Article  Google Scholar 

  31. S. Thiruvenkadama, D. Jovina, A. Leo Rajesh, Sol. Energy 106, 166 (2014)

    Article  Google Scholar 

  32. T. Tanaka, T. Nagatomo, T. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, J. Phys. Chem. Solids 66, 1978 (2005)

    Article  Google Scholar 

  33. K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, Thin Solid Films 515, 5997 (2007)

    Article  Google Scholar 

  34. L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958)

    Google Scholar 

  35. Y. Rodriguez-Lazcano, H. Martinez, M. Calixto-Rodriguez, A. Nunez, Rodriguez. Thin Solid Films 517, 5951 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Adelifard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adelifard, M., Torkamani, R. Spray deposited Cu2ZnSnS4 nanostructured absorber layer: a promising candidate for solar cell applications. J Mater Sci: Mater Electron 26, 3700–3706 (2015). https://doi.org/10.1007/s10854-015-2888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2888-4

Keywords

Navigation