Skip to main content

Advertisement

Log in

Hierarchically porous metallic silver monoliths: facile synthesis, characterization and its evaluation as an electrode material for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple method for exploiting soft template Pluronic P123 and silica nanoparticles for the fabrication of porous silver (pAg) monoliths via modified sol gel route is reported. The pAg monoliths were characterized using FTIR, TGA, XRD, FESEM-EDX and BET techniques. The Brunauer–Emmett–Teller (BET) and field emission scanning electron microscopic techniques (FESEM) were used to study the surface area and porous characteristics. Further, the electrochemical capacitor properties of pAg monoliths were studied using cyclic voltammetry, electrochemical impedance spectroscopy and Galvanostatic charge/discharge techniques. The total capacitive characteristics of pAg monoliths are attributed to the pseudocapacitive characteristics which is due to the redox behavior of Ag/Ag+ and electrochemical double layer capacitance due to its porous nature. Electrochemical measurements show that the maximum specific capacitance, power density and the energy density obtained for pseudocapacitor using pAg modified glassy carbon electrode (pAg/GCE) were 224.0 Fg−1, 17.6 kW kg−1and 31.0 Wh kg−1, respectively at the current density of 0.5 Ag−1. The fabricated pAg modified glassy carbon electrode (pAg/GCE) exhibited excellent life cycle with 91.3 % of the initial specific capacitance retained after 1,000 cycles. The results suggest that this porous material is a promising supercapacitor electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.Y. Xia, W.T. Ng, H.B. Wu, X. Wang, X.W. Lou, Angew. Chem. Int. Ed. 51, 7213 (2012)

    Article  Google Scholar 

  2. Z.Y. Wang, D.C. Luan, M. Li, F.B. Su, S. Madhavi, F. Boey, X.W. Lou, J. Am. Chem. Soc. 132, 16271 (2010)

    Article  Google Scholar 

  3. G.A. Naikoo, R.A. Dar, F. Khan, J. Mater. Chem. A 2, 11792 (2014)

    Article  Google Scholar 

  4. F.Q. Sun, W.P. Cai, Y. Li, L.C. Jia, F. Lu, Adv. Mater. 17, 2872 (2005)

    Article  Google Scholar 

  5. L. Zhou, D.Y. Zhao, X.W. Lou, Angew. Chem. Int. Ed. 51, 239 (2012)

    Article  Google Scholar 

  6. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)

    Article  Google Scholar 

  7. D.V. Shinde, D.Y. Lee, S.A. Patil, I. Lim, S.S. Bhande, W. Lee, M.M. Sung, R.S. Mane et al., RSC Adv. 3, 9431 (2013)

    Article  Google Scholar 

  8. X.Y. Lang, H.T. Yuan, Y. Iwasa, M.W. Chen, Scr. Mater. 64, 923 (2011)

    Article  Google Scholar 

  9. S. Dhibar, C.K. Das, Ind. Eng. Chem. Res. 53, 3495 (2014)

    Article  Google Scholar 

  10. J.R. Miller, P. Simon, Mater. Sci. 321, 651 (2008)

    Google Scholar 

  11. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York, 1999), p. 698

  12. M. Jayalakshmi, K. Balasubramanian, Int. J. Electrochem. Sci. 3, 1196 (2008)

    Google Scholar 

  13. Y. Zhang, H. Feng, X.B. Wu, L.Z. Wang, A.Q. Zhang, T.C. Xia, H.C. Dong, X.F. Li, L.S. Zhang, Int. J. Hydrogen Energy 34, 4889 (2009)

    Article  Google Scholar 

  14. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9, 1872 (2009)

    Article  Google Scholar 

  15. S.W. Lee, J. Kim, S. Chen, P.T. Hammond, H.Y. Shao, ACS Nano 7, 3889 (2010)

    Article  Google Scholar 

  16. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J.P. Ferraris, J. Power Sources 47, 89 (1994)

    Article  Google Scholar 

  17. F. Khan, S. Mann, J. Phys. Chem. C 113, 19871 (2009)

    Article  Google Scholar 

  18. H. Zhang, C. Tang et al., J. Colloid Interface Sci. 380, 16 (2012)

    Article  Google Scholar 

  19. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Company, Boston, 1956)

    Google Scholar 

  20. R. John, S.S. Florence, Chalcogenide Lett. 6, 535 (2009)

    Google Scholar 

  21. A. M. Theivasanthi, M. Alagar. X-ray diffraction studies of copper nanopowder. Archiv. of Phys. Res. 1, 112 (2010)

  22. D. Walsh, I. Arceli, T. Ikoma, S. Tanaka, S. Mann, Nature Mater. 2, 386 (2003)

    Article  Google Scholar 

  23. J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, J. Power Sources 195, 3041 (2010)

    Article  Google Scholar 

  24. Z.S. Wu, K. Parvez, X. Feng, K.V. Mullen, Nature Commun. 4, 2487 (2013). doi:10.1038/ncomms3487

    Google Scholar 

  25. R.B. Rakhi, H.N. Alshareef, J. Power Sources 196, 8858 (2011)

    Article  Google Scholar 

  26. S. Dhibar, C.K. Das, Ind. Eng. Chem. Res. 53, 3495 (2014)

    Article  Google Scholar 

  27. D.S. Patil, S.A. Pawar, R.S. Devanb, M.G. Gangc, Y.R. Ma, J.H. Kim, P.S. Patil, Electrochem. Acta 105, 569 (2013)

    Article  Google Scholar 

  28. L. Borchardt, M. Oschatza, S. Kaskel, Mater. Horiz. 1, 157 (2014)

    Article  Google Scholar 

  29. Q. Wu et al., ACS Nano 4, 1963 (2010)

    Article  Google Scholar 

  30. K. Wang, Y.H. Wang, H. Zhou, J. Phys. Chem. C 113, 1093 (2009)

    Article  Google Scholar 

  31. E. Barsoukov, J.R. Macdonald (eds.), Impedance Spectroscopy - Theory, Experiment, and Applications (Wiley-Interscience, Hoboken, 2005)

    Google Scholar 

  32. G. Nagasubramanian, R.G. Jungst, D.H. Doughty, J. Power Sources 83, 193 (1999)

    Article  Google Scholar 

  33. B.Y. Chang, S.M. Park, Annu. Rev. Anal. Chem. 3, 207 (2010)

    Article  Google Scholar 

  34. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. C 113, 13103 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge UGC New Delhi for financial assistance through Central University Fellowship (CUF) and D. S. Kothari Fellowship. We also acknowledge, Head, Department of Chemistry, Dr. Hari Singh Gour Central University Sagar for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Riyaz Ahmad Dar or Farid Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naikoo, G.A., Dar, R.A., Thomas, M. et al. Hierarchically porous metallic silver monoliths: facile synthesis, characterization and its evaluation as an electrode material for supercapacitors. J Mater Sci: Mater Electron 26, 2403–2410 (2015). https://doi.org/10.1007/s10854-015-2698-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2698-8

Keywords

Navigation