Skip to main content
Log in

Sol–gel synthesis, paramagnetism, photoluminescence and optical properties of Gd-doped and Bi–Gd-codoped hybrid organo-silica glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multifunctional phosphors possessing paramagnetic and semiconducting properties have been synthesized by the sol–gel method. These phosphors are composed of Gd-doped and Bi–Gd-codoped hybrid ethylene glycol (EG)-modified silica glasses. The chemical composition of these hybrids is constituted from 1.5:1 molar ratio of EG:silica, doped with 3 mol% of Gd2O3 in case of the Gd-doped hybrid and with 3 mol% of both of the Bi2O3 and Gd2O3 in case of the Bi–Gd-codoped hybrid. The synthesized hybrid glasses, in the form of transparent and crack-free bulk samples, were analyzed with powder X-ray diffraction, differential thermal analysis coupled with thermogravimetry, vibrating sample magnetometer (VSM), Fourier transform infrared and ultraviolet–visible spectroscopy. Paramagnetic behavior of the glasses was confirmed with VSM results. Absorption properties of the Gd-doped glass in the UV region have three characteristic peaks at 240, 276 and 352 nm. Introduction of bismuth produces additional band at 423 nm in the visible region. Photoluminescence of the glasses was investigated by excitation and emission spectroscopy. Interestingly, excited states other than f–f states are emphasized. Upon UV light excitation at 204 and 274 nm, the Gd-doped glass exhibits phosphorescence visible triplet; blue, green and red; emissions. Under UV light excitation at 304 nm, only blue emission was obtained. These emissions originate from the low-energy intraligand (IL) emissions induced by the Gd3+ in the EG ligand due to the heavy-atom effect and paramagnetism of Gd3+ ions. Incorporation of Bi3+ increases the intensity of Gd–EG–IL emissions and, thus, controls over the luminescence intensity of blue, green and red emissions to achieve white overall emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)

    Book  Google Scholar 

  2. D. Di Martino, N. Chiodini, M. Fasoli, F. Moretti, A. Vedda, A. Baraldi, E. Buffagni, R. Capelletti, M. Mazzera, M. Nikl, G. Angella, C.B. Azzoni, J. Non-Cryst. Solids 354, 3817 (2008)

    Article  Google Scholar 

  3. W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana, J. Chem. Phys. 90, 3443 (1989)

    Article  Google Scholar 

  4. E. Pavitra, J.S. Yu, Ceram. Int. 39, 1029 (2013)

    Article  Google Scholar 

  5. O. Ponta, H. Mocuta, M. Vasilescu, S. Simon, J. Sol-Gel. Sci. Technol. 58, 530 (2011)

    Article  Google Scholar 

  6. S. Rada, M. Rada, E. Culea, J. Non-Cryst. Solids 357, 62 (2011)

    Article  Google Scholar 

  7. V. Singh, G. Sivaramaiah, J.L. Rao, S.H. Kim, J. Lumin. 143, 162 (2013)

    Article  Google Scholar 

  8. J. Zhao, C. Guo, J. Yu, R. Yu, Opt. Laser Technol. 45, 62 (2013)

    Article  Google Scholar 

  9. X.T. Wei, Y.H. Chen, X.R. Cheng, M. Yin, W. Xu, Appl. Phys. B 99, 763 (2010)

    Article  Google Scholar 

  10. M. Ajmal, TSh Atabaev, Opt. Mater. 35, 1288 (2013)

    Article  Google Scholar 

  11. J.E. Lee, N. Lee, H. Kim, J. Kim, S.H. Choi, J.H. Kim, T. Kim, I.C. Song, S.P. Park, W.K. Moon, T. Hyeon, J. Am. Chem. Soc. 132, 552 (2010)

    Article  Google Scholar 

  12. H. Schmidt, J. Non-Cryst. Solids 100, 51 (1988)

    Article  Google Scholar 

  13. C.J. Brinker, G.W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic Press, New York, 1990)

    Google Scholar 

  14. L.L. Hench, J.K. West, Chem. Rev. 90, 33 (1990)

    Article  Google Scholar 

  15. J. Livage, C. Sanchez, J. Non-Cryst. Solids 145, 11 (1992)

    Article  Google Scholar 

  16. S. Sakka (ed.), Handbook of Sol–Gel Science and Technology: Processing, Characterization and Application (Kluwer, Boston, 2005)

    Google Scholar 

  17. H. Schmidt, J. Non-Cryst. Solids 73, 681 (1985)

    Article  Google Scholar 

  18. H. Schmidt, G. Jonschker, S. Goedicke, M. Mennig, J. Sol-Gel. Sci. Technol. 19, 39 (2000)

    Article  Google Scholar 

  19. G. Schottner, Chem. Mater. 13, 3422 (2001)

    Article  Google Scholar 

  20. S.M. Abo-Naf, M.A. Marzouk, R.L. Elwan, J. Mater. Sci.: Mater. Electron. 23, 2293 (2012)

    Google Scholar 

  21. Y. Lin, Y. Chang, W. Yang, B. Tsai, J. Non-Cryst. Solids 352, 789 (2006)

    Article  Google Scholar 

  22. D. Thangaraju, A. Durairajan, S.M. Babu, Y. Hayakawa, J. Alloys Compd. 509, 9890 (2011)

    Article  Google Scholar 

  23. A.A. Kaufman, R.O. Hansen, R.L.K. Kleinberg, in Methods in Geochemistry and Geophysics, Principles of the Magnetic Methods in Geophysics. Paramagnetism, Diamagnetism and Ferromagnetism, vol. 42 (Elsevier Science, Oxford, 2009), pp. 207–254

  24. C. Rümenapp, B. Gleich, A. Haase, Pharm. Res. 29, 1165 (2012)

    Article  Google Scholar 

  25. E. Pérez-Mayoral, V. Negri, J. Soler-Padrós, S. Cerdán, P. Ballesteros, Eur. J. Radiol. 67, 453 (2008)

    Article  Google Scholar 

  26. S. Cheng, D. Shen, X. Zhu, X. Tian, D. Zhou, L. Fan, Eur. Polym. J. 45, 2767 (2009)

    Article  Google Scholar 

  27. Z. Ahmad, J.E. Mark, Chem. Mater. 13, 3320 (2001)

    Article  Google Scholar 

  28. X. Li, M. Yu, Z. Hou, G. Li, P. Ma, W. Wang, Z. Cheng, J. Lin, J. Solid State Chem. 184, 141 (2011)

    Article  Google Scholar 

  29. P. Judeinstein, H. Schmidt, J. Sol-Gel. Sci. Technol. 3, 189 (1994)

    Article  Google Scholar 

  30. A. Hou, H. Chen, Mater. Sci. Eng., B 167, 124 (2010)

    Article  Google Scholar 

  31. S.M. Abo-Naf, R.L. Elwan, M.A. Marzouk, J. Mater. Sci.: Mater. Electron. 23, 1022 (2012)

    Google Scholar 

  32. E. Culea, L. Pop, P. Pascuta, M. Bosca, J. Mol. Struct. 924–926, 192 (2009)

    Article  Google Scholar 

  33. A.T.M. Anishur Rahman, K. Vasilev, P. Majewski, J. Colloid Interface Sci. 354, 592 (2011)

    Article  Google Scholar 

  34. E.V. Mal’chukova, A.I. Nepomnyashchikh, B. Boizot, T.S. Shamirzaev, G. Petite, Phys. Solid State 52, 1919 (2010)

    Article  Google Scholar 

  35. M.A. Marzouk, J. Mol. Struct. 1019, 80 (2012)

    Article  Google Scholar 

  36. D. Thangaraju, A. Durairajan, D. Balaji, S. Moorthy Babu, Y. Hayakawa, J. Lumin. 134, 244 (2013)

    Article  Google Scholar 

  37. S. Rada, E. Culea, J. Non-Cryst. Solids 357, 1724 (2011)

    Article  Google Scholar 

  38. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1979), p. 159

    Google Scholar 

  39. N. Mott, E. Davis, Electronic Process in Non-crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979), p. 289

    Google Scholar 

  40. S.M. Sze, Semiconductor Devices Physics and Technology, 3rd edn. (Wiley, Mississauga, 2007)

    Google Scholar 

  41. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  42. V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1736 (1996)

    Article  Google Scholar 

  43. P. Sharma, M. Vashistha, I.P. Jain, J. Optoelectron. Adv. Mater. 7, 2647 (2005)

    Google Scholar 

  44. J. Singh, K. Shimakawa, Advances in amorphous semiconductors, in Advances in Condensed Matter Science, vol. 5, ed. by D.D. Sarma, G. Kotliar, Y. Tokura (Taylor & Francis, London, 2003)

    Google Scholar 

  45. C. Feifei, D. Shixun, N. Qiuhua, X. Tiefeng, S. Xiang, W. Xunsi, J. Wuhan Uni. Technol. Mater. 24, 716 (2009)

    Article  Google Scholar 

  46. V. Dimitrov, T. Komatsu, J. Non-Cryst. Solids 249, 160 (1999)

    Article  Google Scholar 

  47. N. Ahlawat, S. Sanghi, A. Agarwal, R. Bala, J. Mol. Struct. 963, 82 (2010)

    Article  Google Scholar 

  48. A. Kumar, D.K. Rai, S.B. Rai, Solid State Commun. 117, 387 (2001)

    Article  Google Scholar 

  49. J. Kliava, I.S. Edelman, A.M. Potseluyko, E.A. Petrakovskaja, R. Berger, I. Bruckental, Y. Yeshurun, A.V. Malakhovskii, T.V. Zarubina, J. Phys.: Condens. Matter 15, 6671 (2003)

    Google Scholar 

  50. Y. Kondo, K. Tanaka, R. Ota, T. Fujii, Y. Ishikawa, Opt. Mater. 27, 1438 (2005)

    Article  Google Scholar 

  51. H.E. Dongbing, Y.U. Chunlei, C. Jimeng, L.I. Shunguang, H.U. Lili, J. Rare Earths 29, 48 (2011)

    Article  Google Scholar 

  52. A. Strasser, A. Vogler, Inorg. Chim. Acta 357, 2345 (2004)

    Article  Google Scholar 

  53. A. Vogler, H. Kunkely, Inorg. Chim. Acta 359, 4130 (2006)

    Article  Google Scholar 

  54. H. Kunkely, V. Pawlowski, A. Strasser, A. Vogler, Inorg. Chem. Commun. 11, 415 (2008)

    Article  Google Scholar 

  55. X. Qu, L. Cao, W. Liu, G. Su, P. Wang, I. Schultz, Mater. Res. Bull. 47, 1598 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Abo-Naf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo-Naf, S.M., Abdel-Hameed, S.A.M., Marzouk, M.A. et al. Sol–gel synthesis, paramagnetism, photoluminescence and optical properties of Gd-doped and Bi–Gd-codoped hybrid organo-silica glasses. J Mater Sci: Mater Electron 26, 2363–2373 (2015). https://doi.org/10.1007/s10854-015-2692-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2692-1

Keywords

Navigation