Skip to main content
Log in

Studies on magnetoelectric coupling and magnetic properties of (1 − x)BiFeO3–xBaTiO3 solid solutions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Structure, magnetization and magnetoelectric coupling of (1 − x)BiFeO3–xBaTiO3 (BFO–BT) solid solutions have been studied as a function of BT content (x = 0.10, 0.15, 0.20, 0.25 and 0.30).The phase purity and crystal lattice symmetry were estimated from X-ray diffraction studies, which undergo gradual, well-controlled structural transformations from rhombohedral to cubic structure with morphotropic phase boundary (MPB). The micro-structural features, observed by scanning electron microscopy, demonstrate that the ceramic has highly compact and uniform microstructure having average grain size ~(3 ± 1) μm. The room-temperature magnetization studies exhibit hysteretic behavior with remnant magnetization values of m r  ≤ 0.407 emu/gm and low coercivity H c  ≈ (196 − 1,989) Oe indicating that the latent magnetization locked within the toroidal spin structure of BFO has been released and low loss is achieved. An observation on low coercivity, magnetoelectric (ME) coupling coefficient α ≈ 11.6 mV/cm/Oe at 5,000 Oe, effective high magnetic susceptibility χ eff  ≈ 1.18 × 10−4 or 1.47 × 10−5 emu/gm Oe and pronounced anomaly in the dielectric constant near the magnetic transition temperature suggests quantitative as well as qualitative magnetoelectric coupling in BFO–BT solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960). 119

    Google Scholar 

  2. I.E. Dzyaloshinskii, Soviet Phys JETP. 10(3), 628 (1960)

    Google Scholar 

  3. D.N. Astrov, Soviet. Phys. JETP 11, 708 (1960)

    Google Scholar 

  4. D.N. Astrov, Soviet. Phys. JETP 13, 729 (1961)

    Google Scholar 

  5. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  6. N.A. Hill, A. Filippetti, J. Magn. Magn. Mater. 976, 242 (2002)

    Google Scholar 

  7. R. Ramesh, N.A. Spalding, Nat. Mater. 6, 21 (2007)

    Article  Google Scholar 

  8. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    Article  Google Scholar 

  9. B.F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, J.M. Liu, Adv. Mater. 19, 2889 (2007)

    Article  Google Scholar 

  10. C. Lan, Y. Jiang, S. Yang, J. Mater. Sci. 46, 734 (2001)

    Article  Google Scholar 

  11. I. Sosnowska, R. Przenioslo, P. Fischer et al., Acta. Phys. Polonica A 86, 629 (1994)

    Google Scholar 

  12. I. Sosnowska, R. Przenioslo, P. Fischer et al., J. Magn. Magn. Mater. 160, 384 (1996)

    Article  Google Scholar 

  13. R. Przenioslo, M. Regulski, I. Sosnowska, Jpn. J. Phys. Soc. 75(8), 084718 (2006)

    Article  Google Scholar 

  14. C. Ederer, N.A. Spaldin, Phys. Rev. B. 71, 060401 (2005)

    Article  Google Scholar 

  15. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958)

    Article  Google Scholar 

  16. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  Google Scholar 

  17. A.V. Zalessky, A.A. Frolov, A.K. Zvezdin et al., J. Exp. Theor. Phys. 95, 101 (2002)

    Article  Google Scholar 

  18. A.V. Zalessky, A.A. Frolov, T.A. Khimich et al., Europhys. Lett. 50, 547 (2000)

    Article  Google Scholar 

  19. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithvanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  Google Scholar 

  20. H. Naganuma, S. Okamura, J. Appl. Phys. 101, 09M103 (2007)

    Article  Google Scholar 

  21. H. Bea, M. Bibes, S. Petit, J. Kreisel, A. Barthelemy, Philos. Mag. Lett. 87(3–4), 165 (2007)

    Article  Google Scholar 

  22. P.K. Siwach, H.K. Singh, J. Singh, O.N. Srivastava, Appl. Phys. Lett. 91(12), 122503 (2007)

    Article  Google Scholar 

  23. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 75, 555 (1999)

    Article  Google Scholar 

  24. M.M. Kumar, S. Srinath, G.S. Kumar, S.V. Suryanarayana, J. Magn. Magn. Mater. 188(1), 203 (1998)

    Article  Google Scholar 

  25. M.M. Kumar, A. Srinivas, G.S. Kumar, S.V. Suryanarayana, J. Phys. Condens. Mat. 11(41), 8131 (1999)

    Article  Google Scholar 

  26. Q.Q. Wang, Z. Wang, X.Q. Liu and X.M. Chen, J. Am. Ceram. Soc. 952, 670 (2012-02)

  27. Z.M. Tian, Y.S. Zhang, S.L. Yuan, M.S. Wu, C.H. Wang, Z.Z. Ma, S.Z. Huo, H.N. Duan, Mater. Sci. Eng. B 177, 74 (2012)

    Article  Google Scholar 

  28. T.J. Park, C.P. Georgia, A.J. Vieascs, Y. Lee, H. Zhou, S.S. Wong, Phys. Rev. B 82, 024431 (2010)

    Article  Google Scholar 

  29. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. 101(24), 247602 (2008)

    Article  Google Scholar 

  30. B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, D. Viehland, Phys. Rev. B 69, 064114 (2004)

    Article  Google Scholar 

  31. Y.F. Popov, A.M. Kadomtseva, G.P. Vorob’ev, A.K. Zvezdin, Ferroelectrics 162, 135 (1994)

    Article  Google Scholar 

  32. A.M. Kadomtseva, A.K. Zvezdin, Y.F. Popov, A.P. Pyatakov, G.P. Vorob’ev, JETP Lett. 79(11), 571 (2004)

    Article  Google Scholar 

  33. S.C. Yang, A. Kumar, V. Petkov, S. Priya, J. Appl. Phys. 113(14), 144101 (2013)

    Article  Google Scholar 

  34. Y.S. Oh, S. Crane, H. Zheng, Y.H. Chu, R. Ramesh, K.H. Kim, Appl. Phys. Lett. 97, 052902 (2010)

    Article  Google Scholar 

  35. Y. Wang, J. Hu, Y. Lin, C.W. Nan, NPG Asia Mater. 2(2), 61 (2010)

    Article  Google Scholar 

  36. T.H. Wang, Y. Ding, C.S. Tu, Y.D. Yao, K.T. Wu, T.C. Lin, H.H. Yu, C.S. Ku, H.Y. Lee, J. Appl. Phys. 109, 07D907 (2011)

    Google Scholar 

  37. Y. Yang, V.G.M. Annamdas, C. Wang, Y. Zhou, Sensors 8(1), 271 (2008)

    Article  Google Scholar 

  38. S. Chandarak, M. Unruan, T. Sareein, A. Ngamjarurojana, S. Maensiri, P. Laoratanakul, S. Ananta, R. Yimnirun, J. Magn. 14(3), 120 (2009)

    Article  Google Scholar 

  39. Y.L. Li, G.D. Li, Physics of Ferrite (Publishing House of Electronics Industry of Science, Beijing 1978). 514

  40. M.L. Kahn, Z. John, Zhang. Appl. Phys. Lett. 78(23), 3651 (2001)

    Article  Google Scholar 

  41. J.S. Kim, C.I. Cheon, C.H. Lee, P.W. Jang, J. Appl. Phys. 96(1), 468 (2004)

    Article  Google Scholar 

  42. M.T. Buscaglia, L. Mitoseriu, V. Buscaglia, I. Pallecchi, M. Viviani, P. Nanni, A.S. Siri, J. Eur. Ceram. Soc. 26, 3027 (2006)

    Article  Google Scholar 

  43. T. Fujii, S. Jinzenji, Y. Asahara, J. Appl. Phys. 64, 5434 (1988)

    Article  Google Scholar 

  44. Y. Horibe, M. Nakayama, Y. Hosokoshi, T. Asaka, Y. Matsui, T. Asada, Y. Koyama, S. Mori, Jpn. J. Appl. Phys. Part 144, 7148 (2005)

    Article  Google Scholar 

  45. T.-J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007)

    Article  Google Scholar 

  46. K.H.J. Buschow, Handbook of Magnetic Materials (Elsevier, Amsterdam, 2011)

    Google Scholar 

  47. C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 2005)

    Google Scholar 

  48. S. Singhal, K. Chandra, J. Solid State Chem. 180, 296 (2007)

    Article  Google Scholar 

  49. A.H. Morrish, The Physical Principles of Magnetism (IEEE Press, Piscataway, 2001)

    Book  Google Scholar 

  50. YuE Roginskaya, YuYa. Tomashpol’skii, YuN Venevtsev, V.M. Petrov, G.S. Zhdanov, Sov. Phys. JETP 23, 47 (1966)

    Google Scholar 

  51. M. Kumar, K.L. Yadav, J. Appl. Phys. 100, 074111 (2006)

    Article  Google Scholar 

  52. J.F. Scott, J. Phys. Condens. Matter 20, 021001 (2008)

    Article  Google Scholar 

  53. A.K. Singh, S.D. Kaushik, B. Kumar, P.K. Mishra, A. Venimadhav, V. Siruguri, S. Patnaik, Appl. Phys. Lett. 92, 132910 (2008)

    Article  Google Scholar 

  54. A. Anshul, R. K. Kotnala, R. P. Aloysius, A. Gupta and G. A. Basheed, J. Appl. Phys. doi:10.1063/1.4866053

Download references

Acknowledgments

A.K.G. is thankful to DST and DAE-BRNS, India for financial supports (Grant No.: SR/S2/CMP-0038/2008) and (Grant No.: 2011/37P/11/BRNS/1038-1) respectively. The authors would like to thank Prof. Om Parkash, Department of Ceramic Engineering, IIT(BHU), Varanasi, India for their assistance on XRD and SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Shankar, S., Thakur, O.P. et al. Studies on magnetoelectric coupling and magnetic properties of (1 − x)BiFeO3–xBaTiO3 solid solutions. J Mater Sci: Mater Electron 26, 1427–1434 (2015). https://doi.org/10.1007/s10854-014-2557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2557-z

Keywords

Navigation