Skip to main content
Log in

In situ synthesis and electrophoretic deposition of CNT–ZnS:Mn luminescent nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Intertwined composites of carbon nanotubes (CNTs)–manganese doped zinc sulfide (ZnS:Mn) was prepared by precipitating ZnS:Mn nanoparticles on the CNTs surface followed by electrophoretic deposition on Al substrates. Proper distribution of zinc sulfide nanoparticles on the CNTs surface was obtained via its surface modification by polyvinylpyrrolidone (PVP) and ethylene glycol (EG). The results revealed that cubic zinc sulfide was formed in the deposited nanocomposites. Transmission electron microscope (TEM) showed deagglomeration of ZnS nanoparticles on the CNTs surface in the presence of EG and PVP. Moreover, electrophoretic (EPD) characteristics (i.e. weight deposition, current density and deposition rate) and photoluminescence (PL) measurements confirmed the significant effect of EG and PVP on different properties of CNT–ZnS:Mn nanocomposites. Optimum concentration of PVP was 25 wt% of CNTs, while 50 ml EG showed better EPD and PL properties. The sample containing 25 wt% PVP represented the best coating quality but the highest PL intensities were obtained for the sample synthesized in the presence of 40 ml EG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. X. Liang, Transition from tubes to sheets—a comparison of the properties and applications of carbon nanotubes and graphene, in Nanotube Superfiber Materials Changing Engineering Design, ed. by M.J. Schulz, V.N. Shanov, Z. Yin (William Andrew, Elsevier, Amsterdam, 2014), pp. 519–568

    Chapter  Google Scholar 

  2. O. Gohardani, M.C. Elola, C. Elizetxea, Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences. Prog. Aerosp. Sci. 70, 42–68 (2014)

    Article  Google Scholar 

  3. S. Rul, F. Lefevre-schlick, E. Capria, C. Laurent, A. Peigney, Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater. 52, 1061–1067 (2004)

    Article  Google Scholar 

  4. X.-M. Liu, Z.D. Huang, W.S. Oh, B. Zhang, P.-C. Ma, M.M.F. Yuen, J.-K. Kim, Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos. Sci. Technol. 72, 121–144 (2012)

    Article  Google Scholar 

  5. B.A. Rozenberga, R. Tenne, Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog. Polym. Sci. 33, 40–112 (2008)

    Article  Google Scholar 

  6. Z. Chen, X.J. Dai, K. Magniez, P.R. Lamb, B.L. Fox, X. Wang, Improving the mechanical properties of multiwalled carbon nanotube/epoxy nanocomposites using polymerization in a stirring plasma system. Compos. Part A. Appl. Sci. Manuf. 56, 172–180 (2014)

    Article  Google Scholar 

  7. L. Bokobza, Multiwall carbon nanotube elastomeric composites: a review. Polymer 48, 4907–4920 (2007)

    Article  Google Scholar 

  8. J. Echeberria, N. Rodríguez, J. Vleugels, K. Vanmeensel, A. Reyes-Rojas, A. Garcia-Reyes, C.D. Nguez-Rios, A.A. Elgue´zabal, M.H. Bocanegra-Bernal, Hard and tough carbon nanotube-reinforced zirconia-toughened alumina composites prepared by spark plasma sintering. Carbon 50, 706–717 (2012)

    Article  Google Scholar 

  9. M. Micha´lek, J. Sedla´cˇek, M. Parchoviansky, M. Micha´lkova, D. Galusek, Mechanical properties and electrical conductivity of alumina. Ceram. Int. 40, 1289–1295 (2014)

    Article  Google Scholar 

  10. H.-Z. Wang, X.-D. Li, J. Ma, G.-Y. Li, T.-J. Hu, Multi-walled carbon nanotube-reinforced silicon carbide fibers prepared by polymer-derived ceramic route. Compos. Part A. Appl. Sci. Manuf. 43, 317–324 (2012)

    Article  Google Scholar 

  11. L. Zhao, L. Gao, Coating multi-walled carbon nanotubes with zinc sulfide. J. Mater. Chem. 14, 1001–1004 (2004)

    Article  Google Scholar 

  12. S.M. Mirandaa, G.E. Romanos, V. Likodimos, R.R.N. Marques, E.P. Favvas, F.K. Katsaros, K.L. Stefanopoulos, V.J.P. Vilarb, J.L. Faria, P. Falaras, A.M.T. Silva, Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO2/CNT composites. Appl. Catal. B. Environ. 147, 65–81 (2014)

    Article  Google Scholar 

  13. M.-L. Chen, F.J. Zhang, W.C. Oh, Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources. Carbon N. Y. 47, 2943 (2009)

    Article  Google Scholar 

  14. M.-M. Zou, D.-J. Ai, K.-Y. Liu, Template synthesis of MnO2/CNT nanocomposite and its application in rechargeable lithium batteries. Trans. Nonferrous Met. Soc. China 21, 2010–2014 (2011)

    Article  Google Scholar 

  15. F. Teng, S. Santhanagopalan, D.D. Meng, Microstructure control of MnO2/CNT hybrids under in situ hydrothermal conditions. Solid State Sci. 12, 1677–1682 (2010)

    Article  Google Scholar 

  16. R.-J. Wu, J.-G. Wu, M.-R. Yu, T.-K. Tsai, C.-T. Yeh, Promotive effect of CNT on Co3O4–SnO2 in a semiconductor-type CO sensor working at room temperature. Sens. Actuators. B. Chem. 131, 306–312 (2008)

    Article  Google Scholar 

  17. J.-K. Kim, H. Kim, S.H. Park, T. Jeong, M.J. Bae, Y.C. Kim, I. Han, D. Jung, S. Yu, Effect of a critical percolation threshold in purified short carbon nanotube-polymer/ZnS:Cu, Cl composite on electroluminescence. Org. Electron. 13, 2959–2966 (2012)

    Article  Google Scholar 

  18. B.K. Grandhe, V.R. Bandi, K. Jang, S. Ramaprabhu, H.-S. Lee, D.-S. Shin, S.S. Yi, J.-H. Jeong, Multi wall carbon nanotubes assisted synthesis of YVO4:Eu3+ nanocomposites for display device applications. Compos. Part B. Eng. 43, 1192–1195 (2012)

    Article  Google Scholar 

  19. S.W. Kim, T. Kim, Y.S. Kim, H.S. Choi, H.J. Lim, S.J. Yang, C.R. Park, Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50, 3–33 (2012)

    Article  Google Scholar 

  20. J. Yan, Z. Fan, L. Zhi, Functionalized carbon nanotubes and their enhanced polymers, in Polymer Science: A Comprehensive Reference, ed. by K. Matyjaszewski, M. Möller (Elsevier, Amsterdam, 2012), pp. 1–8

    Google Scholar 

  21. D. Tasis, J. Mikroyannidis, V. Karoutsos, C. Galiotis, K. Papagelis, Single-walled carbon nanotubes decorated with a pyrene-fluorenevinylene conjugate. Nanotechnology 20, 135606 (2009)

    Article  Google Scholar 

  22. S.A. Ntim, O. Sae-Khow, F.A. Witzmann, S. Mitra, Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J. Colloid Interface Sci. 355, 383–388 (2011)

    Article  Google Scholar 

  23. A.R. Boccaccini, J. Choa, T. Subhani, C. Kaya, F. Kaya, Electrophoretic deposition of carbon nanotube–ceramic nanocomposites. J. Eur. Ceram. Soc. 30, 1115–1129 (2010)

    Article  Google Scholar 

  24. B. Toboonsung, P. Singjai, A flexible angle sensor made from MWNT/CuO/Cu2O nanocomposite films deposited by an electrophoretic co-deposition process. J. Alloys Compd. 533, 62–66 (2012)

    Article  Google Scholar 

  25. Y.C. Fan, Y.M. Liu, Y.C. Chen, Y. Sung, M.D. Ger, Carbon nanotube field emission cathodes fabricated with chemical displacement plating. Appl. Surf. Sci. 255, 7753–7758 (2009)

    Article  Google Scholar 

  26. C.K. Lin, C.H. Wu, C.Y. Tsai, C.Y. Chen, S.C. Wang, Pseudo capacitive performance of hybrid manganese oxide films with multiwalled-CNT additions. Surf. Coat. Technol. 205, 1595–1598 (2010)

    Article  Google Scholar 

  27. C.-C. Kao, Y.-C. Liu, Intense green emission of ZnS:Cu, Al phosphor obtained by using diode structure of carbon nano-tubes field emission display. Mater. Chem. Phys. 115, 463–466 (2009)

    Article  Google Scholar 

  28. G. Chen, L. Zhang, H. Ma, N. Yao, B. Zhang, Carbon nanotubes cathode of field emission lamp prepared by electrophoretic deposition. Energy Procedia 16, 240–243 (2012)

    Article  Google Scholar 

  29. M.C. Schausten, D. Meng, R. Telle, A.R. Boccaccini, Electrophoretic deposition of carbon nanotubes and bioactive glass particles for bioactive composite coatings. Ceram. Int. 36, 307–312 (2010)

    Article  Google Scholar 

  30. L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1–61 (2007)

    Article  Google Scholar 

  31. A.R. Boccaccini, J. Cho, J.A. Roether, B.J.C. Thomas, E.J. Minay, M.S.P. Shaffer, Review electrophoretic deposition of carbon nanotubes. Carbon N. Y. 44, 3149–3160 (2006)

    Article  Google Scholar 

  32. B. Ferrari, R. Moreno, EPD kinetics: a review. J. Eur. Ceram. Soc. 30, 1069–1078 (2010)

    Article  Google Scholar 

  33. I. Corni, M.P. Ryan, A.R. Boccaccini, Electrophoretic deposition: from traditional ceramics to nanotechnology. J. Eur. Ceram. Soc. 28, 1353–1367 (2008)

    Article  Google Scholar 

  34. A. Naeimi, A.M. Arabi, A.R. Gardeshzadeh, M. ShafieeAfarani, Study of electrophoretic deposition of ZnS:Ag/CNT composites for luminescent applications. J. Mater. Sci.: Mater. Electron. 25, 1575–1582 (2014)

    Google Scholar 

  35. K. Balamurugan, P. Baskar, R. Mahesh Kumar, S. Das, V. Subramanian, Interaction of carbon nanotube with ethylene glycol–water binary mixture: a molecular dynamics and density functional theory investigation. J. Phys. Chem. C 116, 4365–4373 (2012)

    Article  Google Scholar 

  36. T.-T. Chen, C.-H. Yang, W.-T. Tsai, In-situ synchrotron X-ray diffraction study on the dehydrogenation behavior of NaAlH4 modified by multi-walled carbon nanotubes. Int. J. Hydrog. Energy 37, 14285–14291 (2012)

    Article  Google Scholar 

  37. L. Liang, Y. He, H. Song, X. Yang, X. Cai, C.Y. Xiong, Y. Li, Effect of hydration pretreatment on tunnel etching behaviour of aluminium foil. Corros. Sci. 70, 180–187 (2013)

    Article  Google Scholar 

  38. Z. Hu, B. Ma, S. Liu, M. Narayanan, U. Balachandran, Ceramic dielectric film capacitors fabricated on aluminum foils by chemical solution deposition. Mater. Res. Bull. 52, 189–193 (2014)

    Article  Google Scholar 

  39. X. Qi, G. Poernomo, K. Wang, Y. Chen, M.B. Chan-Park, R. Xu, M.W. Chang, Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties. Nanoscale 3, 1874–1880 (2011)

    Article  Google Scholar 

  40. J. Navamani, R. Palanisamy, R. Gurusamy, M. Ramasamy, S. Arumugam, Development of nanoprobe for the determination of blood cholesterol. J. Biosens. Bioelectron. 3, 1–8 (2012)

    Article  Google Scholar 

  41. G. Ghosh, M.K. Naskar, Synthesis and characterization of PVP-encapsulated ZnS nanoparticles. Opt. Mater. 28, 1047–1053 (2006)

    Article  Google Scholar 

  42. S. Kuche Loghmani, M. Farrokhi-Rad, T. Shahrabi, Effect of polyethyleneglycol on the electrophoretic deposition of hydroxyapatite nanoparticles in isopropanol. Ceram. Int. 39, 7043–7051 (2013)

    Article  Google Scholar 

  43. K.-T. Lau, C.C. Sorrell, Electrophoretic mobilities of dissolved polyelectrolyte charging agent and suspended non-colloidal titanium during electrophoretic deposition. Mater. Sci. Eng. B 176, 369–381 (2011)

    Article  Google Scholar 

  44. R.B. Pandey, Polymer interface changes in electrophoretic deposition. Prog. Org. Coat 47, 324–330 (2003)

    Article  Google Scholar 

  45. K. Tada, M. Onoda, Preparation and application of nanostructured conjugated polymer film by electrophoretic deposition. Thin Solid Films 438–439, 365–368 (2003)

    Article  Google Scholar 

  46. Z. Rui, L. Yingbo, Synthesis and characterization of high-quality colloidal Mn2+-doped ZnS nanoparticles. Opt. Mater. 34, 1788–1794 (2012)

    Article  Google Scholar 

  47. Y. Chen, B. Wang, S. Dong, Y. Wang, Y. Liu, Rectangular microscale carbon tubes with protuberant wall for high-rate electrochemical capacitors. Electrochim. Acta 80, 34–40 (2012)

    Article  Google Scholar 

  48. K. Manzoor, S.R. Vadera, Energy transfer from organic surface adsorbate-polyvinyl pyrrolidone molecules to luminescent centers in ZnS nano crystals. Solid State Commun. 129, 469–473 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Shafiee Afarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeimi, A., Arabi, A.M., Shafiee Afarani, M. et al. In situ synthesis and electrophoretic deposition of CNT–ZnS:Mn luminescent nanocomposites. J Mater Sci: Mater Electron 26, 1403–1412 (2015). https://doi.org/10.1007/s10854-014-2554-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2554-2

Keywords

Navigation