Skip to main content
Log in

Dielectric relaxation in Ba(Y1/2Nb1/2)O3–BaTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free (1 − x)Ba(Y1/2Nb1/2)O3xBaTiO3; (0 ≤ x ≤ 1) ceramics have been synthesized using solid-state reaction method and characterized by X-ray diffraction, scanning electron microscopy, dielectric and impedance studies. The crystal-structure of the compounds is found to be cubic with the space group Pm3m(221) except for BaTiO3 for which it is tetragonal (P4/mmm). Complex impedance spectroscopy analysis indicated the presence of non-Debye type dielectric relaxation in Ba(Y1/2Nb1/2)O3–BaTiO3 system. Compound 0.25Ba(Y1/2Nb1/2)O3–0.75BaTiO3 exhibited a low value of temperature coefficient of capacitance (<±8 %) in the working temperature range (up to +100 °C), room temperature dielectric constant equal to 295 and low loss tangent (0.039) which meets the specifications for “Z5F” of Class I dielectrics of Electronic Industries Association. Hence, this composition might be a suitable candidate for capacitor applications. Ac conductivity and electric modulus studies supported the hopping type of conduction in the system and frequency dependent ac conductivity data obeyed Jonscher’s power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Takenaka, H. Nagata, J. Euro, Ceram. Soc. 25, 2693 (2005)

    Article  Google Scholar 

  2. T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)

    Article  Google Scholar 

  3. P.K. Panda, J. Mater. Sci. 44, 5049 (2009)

    Article  Google Scholar 

  4. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  5. R.-A. Eichel, H. Kungl, Funct. Mater. Lett. 3, 1 (2010)

    Google Scholar 

  6. D. Damjanovic, N. Klein, J. Li, V. Porokhonskyy, Funct. Mater. Lett. 3, 5 (2010)

    Google Scholar 

  7. W. Li, J. Qi, Y. Wang, L. Li, Z. Gui, Mater. Lett. 57, 1 (2002)

    Article  Google Scholar 

  8. Y. Yuan, S. Zhang, W. You, Mater. Lett. 58, 1959 (2004)

    Article  Google Scholar 

  9. G. Li, S. Liu, F. Liao, S. Tian, X. Jing, J. Lin, Y. Uesu, K. Kohn, K. Saitoh, M. Terauchi, N. Di, Z. Cheng, J. Solid State Chem. 177, 1695 (2004)

    Article  Google Scholar 

  10. Y. Hiruma, R. Aoyaqi, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. Part 1(43), 7556 (2004)

    Article  Google Scholar 

  11. S. Mahboob, A.B. Dutta, C. Prakash, G. Swaminathan, S.V. Suryanarayana, G. Prasad, G.S. Kumar, Mater. Sci. Engg. B 134, 36 (2006)

    Article  Google Scholar 

  12. A. Umeri, T.A. Kuku, N. Scuor, V. Sergo, J. Mater. Sci. 43, 922 (2008)

    Article  Google Scholar 

  13. H.L.W. Chan, S.H. Choy, C.P. Chong, H.L. Li, P.C.K. Liu, Ceram. Int. 34, 773 (2008)

    Article  Google Scholar 

  14. I. Molodetsky, P.K. Davies, J. Euro, Ceram. Soc. 21, 2587 (2001)

    Article  Google Scholar 

  15. K. Prasad, International Centre for Diffraction Data, USA (2014) accepted

  16. K. Prasad, S. Bhagat, Priyanka, K. AmarNath, K.P. Chandra, A.R. Kulkarni, Physica B: Conden. Matter 405, 3564 (2010)

  17. L.A. Khalam, H. Sreemoolanathan, R. Ratheesh, P. Mohanan, M.T. Sebastian, Mater. Sci. Engg. B 107, 264 (2004)

    Article  Google Scholar 

  18. X. Chao, Z. Yang, L. Wei, H. Ren, Physica B: Conden. Matter 406, 1849 (2011)

    Article  Google Scholar 

  19. E. Vlakhov, Y. Dimitriev, E. Gattef, A. Staneva, S. Aleksandrova, K. Nenkov, J. Mater. Sci. Lett. 16, 763 (1997)

    Article  Google Scholar 

  20. S. Bhagat, K. AmarNath, K.P. Chandra, R.K. Singh, A.R. Kulkarni, K. Prasad, Adv. Mater. Lett. 5, 117 (2014)

    Google Scholar 

  21. H. Yang, Y. Yang, Y. Lin, J. Zhu, F. Wang, Ceram. Int. 38, 1745 (2012)

    Article  Google Scholar 

  22. N.K. Singh, P. Kumar, C. Prakash, Adv. Mater. Res. 3, 181 (2012)

    Google Scholar 

  23. U. Intatha, S. Eitssayeam, K. Pengpat, G. Rujijanagul, T. Tunkasiri, Ferroelectr. 415, 176 (2011)

    Article  Google Scholar 

  24. K. AmarNath, K. Prasad, Adv. Mater. Res. 1, 115 (2012)

    Article  Google Scholar 

  25. J. Kumar, S.N. Choudhary, K. Prasad, R.N.P. Choudhary, Adv. Mater. Lett. 5, 106 (2014)

    Google Scholar 

  26. C.L. Tian, Z.X. Yue, Y.Y. Zhou, S.Q. Meng, J. Am. Ceram. Soc. 95, 1645 (2012)

    Article  Google Scholar 

  27. C. Tian, Z. Yue, Y. Zhou, L. Li, J. Solid State Chem. 197, 242 (2013)

    Article  Google Scholar 

  28. Y. Guo, P. Xiao, L. Luo, N. Jiang, F. Lei, Q. Zheng, D. Lin, J. Mater. Sci.: Mater. Electron. (2014) online first

  29. Q. Zheng, Y. Guo, F. Lei, X. Wu, D. Lin, J. Mater. Sci.: Mater. Electron. 25, 2638 (2014)

    Google Scholar 

  30. L. Luo, N. Jiang, F. Lei, Y. Guo, Q. Zheng, D. Lin, J. Mater. Sci.: Mater. Electron. 25, 1736 (2014)

    Google Scholar 

  31. K. Prasad, Lily, K. Kumari, K.P. Chandra, K.L. Yadav, S. Sen, Appl. Phys. A 88, 377 (2007)

  32. C.A. Angell, Chem. Rev. 90, 523 (1990)

    Article  Google Scholar 

  33. K. Prasad, K. Kumari, Lily, K.P. Chandra, K.L. Yadav, S. Sen. Adv. Appl. Ceram. 106, 241 (2007)

    Article  Google Scholar 

  34. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)

    Article  Google Scholar 

  35. A.K. Jonscher, Dielectric relaxation in solids (Chelsea, New York, 1983)

    Google Scholar 

  36. S. Bhagat, K. Prasad, Phys. Status Solidi (a) 207, 1232 (2010)

    Article  Google Scholar 

  37. F.A. Kröger, H.J. Vink, Solid State Phys. 3, 307 (1956)

    Google Scholar 

  38. R. Maier, J.L. Chon, J.J. Neumeier, L.A. Bendersky, Appl. Phys. Lett. 78, 2536 (2001)

    Article  Google Scholar 

  39. E. Iguchia, S. Mochizuki, J. Appl. Phys. 96, 3889 (2004)

    Article  Google Scholar 

  40. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  Google Scholar 

  41. S. Upadhyay, A.K. Sahu, D. Kumar, O. Parkash, J. Appl. Phys. 84, 828 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The present work was supported by ER & IPR Division of Defense Research and Development Organization, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, K., Priyanka, AmarNath, K. et al. Dielectric relaxation in Ba(Y1/2Nb1/2)O3–BaTiO3 ceramics. J Mater Sci: Mater Electron 25, 4856–4866 (2014). https://doi.org/10.1007/s10854-014-2244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2244-0

Keywords

Navigation