Skip to main content
Log in

Ferroelectric hysteresis and improved fatigue of PZT (53/47) films fabricated by a simplified sol–gel acetic-acid route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Double-layer Pb(Zr0.53Ti0.47)O3 films were fabricated by spin coating of a sol–gel acetic-acid-based precursor solution deposited onto commercial Pt–Si substrates. The structural properties of the samples were studied by several diffraction, spectroscopy and microscopy techniques. The annealed ferroelectric films were crystallized to a pure PZT perovskite phase. A significant monoclinic phase content was found together with a relatively large tetragonal c/a ratio, according to the diffraction pattern refinement results. No traces of organic material were observed. Good film densification with relatively large grain sizes and low surface roughness was achieved. Ferroelectric domain distribution and local piezoresponse hysteresis loops were investigated by piezoresponse force microscopy. The films showed good local ferroelectric properties and a relatively large d33 piezoelectric coefficient was derived. A degree of self-polarization of the film was also found from the domain distribution-map analysis. Good macroscopic ferroelectric properties were also achieved, specially for the film with less rhombohedral content. An improved ferroelectric fatigue behavior was observed as the films proved to sustain down to 108 fatigue cycles with only a 10 % decrease of the initial remnant polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.J. Taylor, Handbook of Thin Film Devices (Academic Press, London, 2000), p. 235

    Google Scholar 

  2. C.-B. Eom, S. Trolier-McKinstry, MRS Bull. 37, 1007 (2012)

    Article  Google Scholar 

  3. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100, 051606 (2006)

    Article  Google Scholar 

  4. J.F. Scott, in Ferroelectric Random Access Memories: Fundamentals and Applications, ed. by H. Ishiwara, M. Okuyama, Y. Arimoto (Springer, Berlin, 2004), p. 3

    Chapter  Google Scholar 

  5. V.N. Hung, L. Van Minh, B.T. Huyen, N.D. Minh, J. Phys: Conf. Ser. 187, 012063 (2009)

    Google Scholar 

  6. E. Bruno, F. Ciuchi, M. Castriota, S. Marino, G. Nicastro, E. Cazzanelli, N. Scaramuzza, Ferroelectrics 396, 49 (2010)

    Article  Google Scholar 

  7. S.K. Pandey, A.R. James, R. Raman, S.N. Chatterjee, A. Goyal, C. Prakash, T.C. Goel, Phys. B 369, 135 (2005)

    Article  Google Scholar 

  8. M.L. Calzada, in Multifunctional Polycrystalline Ferroelectric Materials. Processing and Properties. Springer Series in Materials Science, ed. by L. Pardo, J. Ricote (Springer, New York, 2011), p. 93

  9. S. Hong, J. Woo, H. Shin, J.U. Jeon, Y.E. Pak, E.L. Colla, N. Setter, E. Kim, K. No, J. Appl. Phys. 89, 1377 (2001)

    Article  Google Scholar 

  10. C.I. Enriquez-Flores, J.J. Gervacio-Arciniega, E. Cruz-Valeriano, P. de Urquijo-Ventura, B.J. Gutierrez-Salazar, F.J. Espinoza-Beltran, Nanotechnology 23, 495705 (2012)

    Article  Google Scholar 

  11. S.V. Kalinin, B.J. Rodriguez, A.Y. Borisevich, A.P. Baddorf, N. Balke, H.J. Chang, L.-Q. Chen, S. Choudhury, S. Jesse, P. Maksymovych, M.P. Nikiforov, S.J. Pennycook, Adv. Mater. 22, 314 (2010)

    Article  Google Scholar 

  12. A.L. Kholkin, V.V. Shvartsman, in Multifunctional Polycrystalline Ferroelectric Materials. Processing and Properties. Springer Series in Materials Science, ed. by L. Pardo, J. Ricote (Springer, New York, 2011), p. 409

  13. G. Helke, K. Lubitz, in Piezoelectricity: Evolution and Future of a Technology, ed. by W. Heywang, K. Lubitz, W. Wersing (Springer, New York, 2008), p. 89

  14. R. Mayén-Mondragón, J.M. Yánez-Limón, K.M. Moya-Canul, A. Herrera-Gomez, M. Vazquez-Lepe, F. Espinoza-Beltrán, A.M. López Beltrán, J. Mater. Sci.: Mater. Electron. 24, 1981 (2013)

    Google Scholar 

  15. L. Lutterotti, S. Gialanella, Acta Mater. 46, 101 (1998)

    Article  Google Scholar 

  16. NIST, Engineering Statistics Handbook. http://www.itl.nist.gov/div898/handbook/

  17. E.B. Araújo, E.C. Lima, J.D.S. Guerra, A.O. dos Santos, L.P. Cardoso, M.U. Kleinke, J. Phys.: Condens. Matter 20, 415203 (2008)

    Google Scholar 

  18. K.C.V. Lima, A.G. Souza Filho, A.P. Ayala, J. Mendes Filho, P.T.C. Freire, F.E.A. Melo, E.B. Araújo, J.A. Eiras, Phys. Rev. B 63, 184105 (2001)

    Article  Google Scholar 

  19. D. Pandey, A.K. Singh, S. Baik, Acta Crystallogr. Sect. A 64, 192 (2008)

    Article  Google Scholar 

  20. G. Suchaneck, D. Chvostová, J. Kousal, V. Železný, A. Lynnyk, L. Jastrabík, G. Gerlach, A. Dejneka, Thin Solid Films 519, 2885 (2011)

    Article  Google Scholar 

  21. I. Boerasu, M. Pereira, M.J.M. Gomes, M.I.C. Ferreira, J. Optoelectron. Adv. Mater. 2, 602 (2000)

    Google Scholar 

  22. A.G. Souza Filho, K.C.V. Lima, A.P. Ayala, I. Guedes, P.T.C. Freire, F.E.A. Melo, J. Mendes Filho, E.B. Araújo, J.A. Eiras, Phys. Rev. B 66, 132107 (2002)

    Article  Google Scholar 

  23. M. Deluca, H. Fukumura, N. Tonari, C. Capiani, N. Hasuike, K. Kisoda, C. Galassi, H. Harima, J. Raman Spectrosc. 42, 488 (2011)

    Article  Google Scholar 

  24. J.F. Meng, R.S. Katiyar, G.T. Zou, X.H. Wang, Phys. Stat. Sol. 164, 851 (1997)

    Article  Google Scholar 

  25. J. Rouquette, J. Haines, V. Bornand, M. Pintard, P. Papet, J.L. Sauvajol, Phys. Rev. B 73, 224118 (2006)

    Article  Google Scholar 

  26. E. Kafadaryan, N. Aghamalyan, S. Nikogosyan, H. Shirinyan, A. Manukyan, A. Hayrapetyan, G. Badalyan, Y. Song, N. Wu, A. Ignatiev, Jpn. J. Appl. Phys. 45, 1702 (2006)

    Article  Google Scholar 

  27. F.M. Pontes, E.R. Leite, M.S.J. Nunes, D.S.L. Pontes, E. Longo, R. Magnani, P.S. Pizani, J.A. Varela, J. Eur. Ceram. Soc. 24, 2969 (2004)

    Article  Google Scholar 

  28. M.T. Escote, F.M. Pontes, E.R. Leite, E. Longo, R.F. Jardim, P.S. Pizani, J. Appl. Phys. 96, 2186 (2004)

    Article  Google Scholar 

  29. E.B. Araújo, K. Yukimitu, J.C.S. Moraes, L.H.Z. Pelaio, J.A. Eiras, J. Phys.: Condens. Matter 14, 5195 (2002)

    Google Scholar 

  30. A. Bhaskar, T.-H. Chang, H.-Y. Chang, S.-Y. Cheng, Appl. Surf. Sci. 255, 3795 (2009)

    Article  Google Scholar 

  31. R. Fernández García, Ph.D. thesis, Autonomous University of Madrid (2010)

  32. R.J. Ong, D.A. Payne, N.R. Sottos, J. Am. Ceram. Soc. 88, 2839 (2005)

    Article  Google Scholar 

  33. W.S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, MD (1997–2014). http://imagej.nih.gov/ij/

  34. A.L. Kholkin, S.V. Kalinin, A. Roelofs, A. Gruverman, in Scanning Probe Microscopy. Electrical and Electromechanical Phenomena at the Nanoscale, ed. by S.V. Kalinin, A. Gruverman (Springer Science + Business Media, New York, 2007), pp. 173–214

  35. JPK Piezoresponse Force Microscopy (PFM). JPK Instruments. Technical note. Consulted on 04/04/2014. http://www.jpk.com/afm.230.en.html?filter_report=25

  36. I.K. Yoo, S.B. Desu, Phys. Stat. Sol. 133, 565 (1992)

    Article  Google Scholar 

  37. A.K. Tagantsev, I. Stolichnov, E.L. Colla, N. Setter, J. Appl. Phys. 90, 1387 (2001)

    Article  Google Scholar 

  38. P. Gerber, A. Roelofs, C. Kügeler, U. Böttger, R. Waser, K. Prume, J. Appl. Phys. 96, 2800 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ing. Eleazar Urbina, M. C. Araceli Mauricio, M. T. R. Flores-Farias and PhD C. I Enriquez-flores for their technical assistance. To Conacyt for the financial support through projects CB-2007-82843, Lab-2009-01-123630 and the economical support to Dra. Ma. Del Carmen Rodríguez national postdoctoral program. F. Calderon Piñar is grateful to Cinvestav, for his sabbatical stay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Yáñez-Limón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Aranda, M.C., Calderón-Piñar, F., Espinoza-Beltrán, F.J. et al. Ferroelectric hysteresis and improved fatigue of PZT (53/47) films fabricated by a simplified sol–gel acetic-acid route. J Mater Sci: Mater Electron 25, 4806–4813 (2014). https://doi.org/10.1007/s10854-014-2237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2237-z

Keywords

Navigation