Skip to main content
Log in

Preparation and characterization of NiMn2O4 negative temperature coefficient ceramics by solid-state coordination reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of synthesis parameters, such as calcination temperature and sintering temperature, on the microstructure, phase composition, and electrical properties of NiMn2O4 negative temperature coefficient (NTC) ceramics was systematically investigated. The NiMn2O4 NTC ceramics were synthesized via solid-state coordination reaction. With increasing sintering temperatures, the relative density increased, whereas the porosity decreased. Single-phase, cubic spinel ceramic was obtained following sintering at 900 and 1,050 °C, whereas a secondary phase, i.e., NiO, was detected when the sintering temperature was higher than 1,100 °C. High-density ceramics were obtained when the sintering temperature was higher than 1,100 °C, and featured the lowest room temperature resistivity of 2,924 Ω cm and thermal constant B of 3,429 K. The latter parameter reflects the temperature sensitivity of the NTC ceramics. Variations of the electrical property were because of increases in density and onset of decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Feteira, J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  Google Scholar 

  2. H. Schulze, J. Li, E.C. Dickey, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 738–744 (2009)

    Article  Google Scholar 

  3. W. Luo, H.M. Yao, P.H. Yang, C.S. Chen, J. Am. Ceram. Soc. 92, 2682–2686 (2009)

    Article  Google Scholar 

  4. K.E. Sickafus, J.M. Wills, N.W. Grimes, J. Am. Ceram. Soc. 82, 3279–3292 (1999)

    Article  Google Scholar 

  5. K. Park, J. Am. Ceram. Soc. 88, 862–866 (2005)

    Article  Google Scholar 

  6. A. Sagua, G.M. Lescano, J.A. Alonso, R. Martínez-Coronado, M.T. Fernández-Díaz, E. Morán, Mater. Res. Bull. 47, 1335–1338 (2012)

    Article  Google Scholar 

  7. W.A. Groen, C. Metzmacher, V. Zaspalis, P. Huppertz, S. Schuurman, J. Eur. Ceram. Soc. 21, 1793–1796 (2001)

    Article  Google Scholar 

  8. S. Fritsch, J. Sarrias, M. Brieu, J.J. Couderc, J.L. Baudour, E. Snoeck, A. Rousset, Solid State Ion 109, 229–237 (1998)

    Article  Google Scholar 

  9. D.-F. Li, S.-X. Zhao, K. Xiong, H.-Q. Bao, C.-W. Nan, J Alloys Compd 582, 283–288 (2014)

    Article  Google Scholar 

  10. N. El Horr, S. Guillemet-Fritsch, A. Rousset, H. Bordeneuve, C. Tenailleau, J. Eur. Ceram. Soc. 34, 317–326 (2014)

    Article  Google Scholar 

  11. R. Schmidt, A. Stiegelschmitt, A. Roosen, A.W. Brinkman, J. Eur. Ceram. Soc. 23, 1549–1558 (2003)

    Article  Google Scholar 

  12. C. Zhao, Y. Zhao, Y. Wang, Solid State Commun. 152, 593–595 (2012)

    Article  Google Scholar 

  13. Dl Fang, Z.B. Wang, P.H. Yang, W. Liu, C.S. Chen, A.J.A. Winnubst, J. Am. Ceram. Soc. 89, 230–235 (2006)

    Article  Google Scholar 

  14. C. Ma, Y. Liu, Y. Lu, H. Gao, H. Qian, J. Ding, J. Mater. Sci.: Mater. Electron. 24, 5183–5188 (2013)

    Google Scholar 

  15. T. Cheng, R. Raj, J. Am. Ceram. Soc. 71, 276–280 (1988)

    Article  Google Scholar 

  16. K. Park, I.H. Han, Mater. Sci. Eng., B 119, 55–60 (2005)

    Article  Google Scholar 

  17. K. Park, D.Y. Bang, J. Mater. Sci.: Mater. Electron. 14, 81–87 (2003)

    Google Scholar 

  18. T. Reimann, J. Töpfer, S. Barth, H. Bartsch, J. Müller, Int. J. Appl. Ceram. Technol. 10, 428–434 (2013)

    Article  Google Scholar 

  19. O. Bodak, L. Akselrud, P. Demchenmko, B. Kotur, O. Mrooz, I. Hadzaman, O. Shpotyuk, F. Aldinger, H. Seifert, S. Volkov, V. Pekhnyo, J Alloys Compd 347, 14–23 (2002)

    Article  Google Scholar 

  20. K. Park, I.H. Han, J. Electroceram. 17, 1069–1073 (2006)

    Article  Google Scholar 

  21. K. Park, D.Y. Bang, J.G. Kim, J.Y. Kim, C.H. Lee, B.H. Choi, J Korean Phys Soc 41, 251–256 (2002)

    Google Scholar 

  22. J. Töpfer, J. Jung, Thermochim. Acta 202, 281–289 (1992)

    Article  Google Scholar 

  23. B. Gillot, J.L. Baudour, F. Bouree, R. Metz, R. Legros, A. Rousset, Solid State Ion 58, 155–161 (1992)

    Article  Google Scholar 

  24. T. Yokoyama, T. Meguro, S. Okazaki, H. Fujikawa, T. Ishikawa, J. Tatami, T. Wakihara, K. Komeya, T. Sasamoto, Adv. Mater. Res. 29–30, 359–362 (2007)

    Article  Google Scholar 

  25. J.L. Martín de Vidales, R.M. Rojas, E. Vila, O. García-Martínez, Mater. Res. Bull. 29, 1163–1173 (1994)

    Article  Google Scholar 

  26. C. Laberty, P. Alphonse, J.J. Demai, C. Sarda, A. Rousset, Mater. Res. Bull. 32, 249–261 (1997)

    Article  Google Scholar 

  27. T. Xiao-Xia, A. Manthiram, J.B. Goodenough, J Less Common Met 156, 357–368 (1989)

    Article  Google Scholar 

  28. D.G. Wickham, J. Inorg. Nucl. Chem. 26, 1369–1377 (1964)

    Article  Google Scholar 

  29. J. Jung, J. Töpfer, A. Feltz, J. Therm. Anal. Calorim. 36, 1505–1518 (1990)

    Article  Google Scholar 

  30. K. Park, J.K. Lee, J Alloys Compd 475, 513–517 (2009)

    Article  Google Scholar 

  31. K. Park, J.K. Lee, S.J. Kim, W.S. Seo, W.S. Cho, C.W. Lee, S. Nahm, J Alloys Compd 467, 310–316 (2009)

    Article  Google Scholar 

  32. J. Junga, J. Töpfera, J. Mürbeb, A. Feltz, J. Eur. Ceram. Soc. 6, 351–359 (1990)

    Article  Google Scholar 

  33. A. Feltz, W. Polzl, J. Eur. Ceram. Soc. 20, 2353–2366 (2000)

    Article  Google Scholar 

  34. G.D.C. Csete de Györgyfalva, I.M. Reaney, J. Eur. Ceram. Soc. 21, 2145–2148 (2001)

    Article  Google Scholar 

  35. R.J.A.E.G. Larson, D.G. Wickham, J. Phys. Chem. Solids 23, 1771–1781 (1962)

    Google Scholar 

  36. S.E. Dorris, T.O. Mason, J. Am. Ceram. Soc. 71, 379–385 (1988)

    Article  Google Scholar 

  37. H. Zhang, A. Chang, C. Peng, Microelectron. Eng. 88, 2934–2940 (2011)

    Article  Google Scholar 

  38. S.A. Kanade, V. Puri, J Alloys Compd 475, 352–355 (2009)

    Article  Google Scholar 

  39. K. Park, S.J. Kim, J.G. Kim, S. Nahm, J. Eur. Ceram. Soc. 27, 2009–2016 (2007)

    Article  Google Scholar 

  40. S.A. Kanade, V. Puri, Mater. Lett. 60, 1428–1431 (2006)

    Article  Google Scholar 

  41. K. Park, J.K. Lee, J.G. Kim, S. Nahm, J Alloys Compd 437, 211–214 (2007)

    Article  Google Scholar 

  42. K. Park, Mater. Sci. Eng., B 104, 9–14 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Ma, C. & Sun, B. Preparation and characterization of NiMn2O4 negative temperature coefficient ceramics by solid-state coordination reaction. J Mater Sci: Mater Electron 25, 3990–3995 (2014). https://doi.org/10.1007/s10854-014-2118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2118-5

Keywords

Navigation