Skip to main content
Log in

Investigation of chalcopyrite film growth at various temperatures: analyses from top to the bottom of the thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We reported a new method to investigate the phases and structures of thin film bottom parts. The films were polished by flapping papers to reach the bottoms. The surfaces and cross sections of thin films were observed by Scanning Electron Microscopy. Grazing Incidence X-ray Diffraction, Raman spectra and X-ray Photoelectron Spectroscopy (XPS) were used to investigate the phases, structures and chemical components of the surfaces and bottoms of thin films. By this method, we studied the growth processes of chalcopyrite films after the selenization at various temperatures from 270 to 600 °C. At 270 °C, a great amount of Cu–Se nodules formed at the surface, while (In,Ga)–Se stayed in the bottom. At 380 °C, a double layer structure was observed in the film. The top part was typical CuInSe2 polycrystalline, while the bottom part contained complicated components, like CuInSe2, Cu(In,Ga)3Se5, (In,Ga)Se. At 600 °C, a single layer was formed, which was composed of Cu(In,Ga)Se2 phase. However, a higher Ga/(In+Ga) ratio was obtained towards the back contact. In addition, XPS indicated that the Mo/Cu(In,Ga)Se2 interface was rich in Ga and Se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Nakada, Electron. Mater. Lett. 8, 179–185 (2012)

    Article  Google Scholar 

  2. J. Kaneshiro et al., Sol. Energy Mat. Sol. Cells 94, 12–16 (2010)

    Article  Google Scholar 

  3. F. Roux et al., Sol. Energy Mat. Sol. Cells 115, 86–92 (2013)

    Article  Google Scholar 

  4. P. Jackson et al., Prog. Photovolt Res. Appl. 19, 894–897 (2011)

    Article  Google Scholar 

  5. H. Wang et al., Semicond. Sci. Technol. 25, 055007 (2010)

    Article  Google Scholar 

  6. J. Liu, A.-X. Wei et al., J. Mater. Sci. Mater. Electron. 24, 2553–2557 (2013)

    Article  Google Scholar 

  7. Y.C. Lin, C.H. Shen et al., J. Mater. Sci. Mater. Electron. 24, 2906–2912 (2013)

    Article  Google Scholar 

  8. M. Park et al., J. Alloys Compd. 513, 68–74 (2012)

    Article  Google Scholar 

  9. N.D. Sang et al., Bull. Mater. Sci. 36, 735–741 (2013)

    Article  Google Scholar 

  10. T.J. Gillespie et al., Sol. Energy Mat. Sol. Cells 59, 27–34 (1999)

    Article  Google Scholar 

  11. N. Romeo et al., Thin Solid Films 535, 88–91 (2013)

    Article  Google Scholar 

  12. J. Palm et al., Thin Solid Films 451–452, 544–551 (2004)

    Article  Google Scholar 

  13. F.B. Dejene, Curr. Appl. Phys. 10, 36–40 (2010)

    Article  Google Scholar 

  14. B. Li et al., Semicond. Sci. Technol. 27, 065007 (2012)

    Article  Google Scholar 

  15. S. Zulfiqar, E. Yassitepe et al., J. Mater. Sci. Mater. Electron. 24, 3226–3230 (2013)

    Article  Google Scholar 

  16. K.H. Liao et al., J. Alloys Compd. 581, 250–256 (2013)

    Article  Google Scholar 

  17. J. Chantana et al., J. Appl. Phys. 114, 084501 (2013)

    Article  Google Scholar 

  18. W. Liu et al., J. Phys. D Appl. Phys. 42, 125303 (2009)

    Article  Google Scholar 

  19. B. Canava et al., Thin Solid Films 431–432, 289–295 (2003)

    Article  Google Scholar 

  20. J.S. Jang et al., Appl. Surf. Sci. 282, 777–781 (2013)

    Article  Google Scholar 

  21. R. Zhang, et al. J. Appl. Phys. 52, UNSP 092302 (2013)

  22. T. Schulmeyer et al., Thin Solid Films 480–481, 110–117 (2005)

    Article  Google Scholar 

  23. J. Liu et al., Vacuum 102, 26–30 (2014)

    Article  Google Scholar 

  24. G. Bilger et al., Appl. Surf. Sci. 231–232, 804–807 (2004)

    Article  Google Scholar 

  25. A.R. Jeong et al., Mater. Chem. Phys. 134, 1030–1035 (2012)

    Article  Google Scholar 

  26. W. Witte et al., Thin Solid Films 517, 867–869 (2008)

    Article  Google Scholar 

  27. V.I. Roca et al., Thin Solid Films 519, 7300–7303 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the financial support of the Beijing Ministerium for the science project under contract No. H030630010120. A significant part of thin film characterization (GIXRD, Raman Spectroscopy and XPS) was performed at Centre for Micro-Characterization at the CNRS-IMN institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-feng Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Jf., Liao, C., Jiang, T. et al. Investigation of chalcopyrite film growth at various temperatures: analyses from top to the bottom of the thin films. J Mater Sci: Mater Electron 25, 2237–2243 (2014). https://doi.org/10.1007/s10854-014-1864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1864-8

Keywords

Navigation