Skip to main content

Advertisement

Log in

Effects of MgO on properties of Li2O–Al2O3–SiO2 glass–ceramics for LTCC applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li2O–Al2O3–SiO2 (LAS) glass–ceramics for low temperature co-fired ceramics (LTCC) application were prepared by melting method, and the effects of MgO on the sinterability, microstructure, dielectric property, thermal expansion coefficient (CTE) and mechanical character of this glass–ceramics have been studied. The X-ray diffraction images represent that the main phase is β-spodumene solid solutions. And some ZrO2 and CaMgSi2O6 phases in LAS glass–ceramics are detected. The LAS glass–ceramics without additive (MgO) sintered at 800° had the dielectric properties: dielectric constant (εr) of 5.3, dielectric loss (tanδ) of 2.97 × 10−3 at 1 MHz, CTE value of 1.06 × 10−6 K−1, bulk density of 2.17 g/cm3, and flexural strength of 73 MPa. 5.5 wt% MgO-added LAS glass–ceramic achieves densification at 800° exhibited excellent properties: low dielectric constant and loss (εr = 7.1, tanδ = 2.02 × 10−3 at 1 MHz), low CTE (2.89 × 10−6 K−1), bulk density = 2.65 g/cm3 as well as high flexural strength (145 MPa). The results indicate that the addition of MgO is helpful to improve the dielectric and mechanical properties. The formation of CaMgSi2O6 crystal phase with higher CTE leads to the increase of CTE value of LAS glass–ceramics due to the increasing MgO content, and the increase of CTE is favourable for matching with silicon (3.1 × 10−6 K−1). The prepared LAS glass–ceramics have the potential for LTCC application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.V. Toan, H. Miyashita, M. Toda, Y. Kawai, T. Ono, Fabrication of an hermetically packaged silicon resonator on LTCC substrate. Microsyst. Technol. 19(8), 1165–1175 (2013)

    Article  Google Scholar 

  2. X. Zhou, B. Li, S. Zhang, H. Ning, Effect of Ca/Si ratio on the microstructures and properties of CaO–B2O3–SiO2 glass–ceramics. J. Mater. Sci. Mater. Electron. 20(3), 262–266 (2009)

    Article  Google Scholar 

  3. H. Zhu, H. Zhou, M. Liu, P. Wei, G. Xu, G. Ning, Microstructure and microwave dielectric characteristics of CaO–B2O3–SiO2 glass ceramics. J. Mater. Sci. Mater. Electron. 20(11), 1135–1139 (2009)

    Article  Google Scholar 

  4. B. Li, Y. Yuan, S.R. Zhang, Y. Xu, Effects of P2O5 on sinterability, microstructures and properties of glass/alumina composites. J Mater. Sci. Mater. Electron. 22(8), 924–928 (2011)

    Article  Google Scholar 

  5. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–90 (2008)

    Article  Google Scholar 

  6. G.B. Xia, L.T. He, D.A. Yang, Preparation and characterization of CaO-Al2O3-SiO2 glass/fused silica composites for LTCC application. J. Alloys. Compd. 531, 70–76 (2012)

    Article  Google Scholar 

  7. S. Jo, S. Kang, TiO2 effect on crystallization mechanism and physical properties of nano glass–ceramics of MgO–Al2O3–SiO2 glass system. J. Nanosci. Nanotechnol. 13(5), 3542–3545 (2013)

    Article  Google Scholar 

  8. F. Yuan, Y.T. Shi, Z.X. He, J.H. Guo, Y. Cao, Nucleation, grain growth and microstructure of CaO–B2O3–SiO2 glass–ceramics for low temperature co-fired ceramics. Glass Technol-Part A 53(1), 8–15 (2012)

    Google Scholar 

  9. O.R.K. Montedo, D. Hotza, A.P.N. de Oliveira, R. Meszaros, N. Travitzky, P. Greil, Crystallisation kinetics of a beta-spodumene-based glass ceramic. Adv. Mater. Sci. Eng. 2012, (2012). doi:10.1155/2012/525428

  10. V.O. Soares, R.C.V.M. Reis, E.D. Zanotto, M.J. Pascual, A. Duran, Non-isothermal sinter-crystallization of jagged Li2O–Al2O3–SiO2 glass and simulation using a modified form of the clusters model. J. Non-Cryst. Solids 358(23), 3234–3242 (2012)

    Article  Google Scholar 

  11. W. Pannhorst, Recent developments for commercial applications of low expansion glass ceramics. Glass Technol. 45(2), 51–53 (2004)

    Google Scholar 

  12. O.R.K. Montedo, F.M. Bertan, R. Piccoli, D. Hotza, A.N. Klein, A.P.N. de Oliveira, Low thermal expansion sintered LZSA glass–ceramics. Am. Ceram. Soc. Bull. 87(7), 34–40 (2008)

    Google Scholar 

  13. A. Nemati, P. Goharian, M. Shabanian, A. Afshar, Effects of nucleation agent particle size on properties, crystallisation and microstructure of glass–ceramics in TiO2–ZrO2–Li2O–CaO–Al2O3–SiO2 system. Adv. Appl. Ceram. 109(6), 318–323 (2010)

    Article  Google Scholar 

  14. X.Q. Liu, W.Z. Song, J.Y. Wang, H.C. Sun, H.B. Yang, G.T. Zou, J. Ouyang, Effect of P2O5 addition on the crystallization properties of Li2O–SiO2–Al2O3–K2O–ZnO glass-ceramic. Acta Chim. Sinica 65(14), 1394–1398 (2007)

    Google Scholar 

  15. X.Z. Guo, H. Yang, C. Han, F.F. Song, Crystallization and microstructure of Li2O–Al2O3–SiO2 glass containing complex nucleating agent. Thermochim. Acta 444(2), 201–205 (2006)

    Article  Google Scholar 

  16. A.M. Hu, K.M. Liang, F. Zhou, F. Peng, G.L. Wang, Effect of nucleation agent on the crystallization of Li2O–Al2O3–SiO2 system glass. J Inorg Mater. 20(2), 279–284 (2005)

    Google Scholar 

  17. P. Lu, Y. Zheng, J.S. Cheng, D.Y. Guo, Effect of La2O3 addition on crystallization and properties of Li2O–Al2O3–SiO2 glass–ceramics. Ceram. Int. 39(7), 8207–8212 (2013)

    Article  Google Scholar 

  18. P.R. Babu, R. Vijay, P.S. Rao, P. Suresh, N. Veeraiah, D.K. Rao, Dielectric and spectroscopic properties of CuO doped multi-component Li2O–PbO–B2O3–SiO2–Bi2O3–Al2O3 glass system. J. Non-Cryst. Solids 370, 21–30 (2013)

    Article  Google Scholar 

  19. H.R. Fernandes, D.U. Tulyaganov, M.J. Pascual, V.V. Kharton, A.A. Yaremchenko, J.M.F. Ferreira, The role of K2O on sintering and crystallization of glass powder compacts in the Li2O–K2O–Al2O3–SiO2 system. J. Eur. Ceram. Soc. 32(10), 2283–2292 (2012)

    Article  Google Scholar 

  20. A. Tarafder, K. Annapurna, R.S. Chaliha, B. Karmakar, V.S. Tiwari, P.K. Gupta, Effects of nano-LiTaO3 crystallization on the dielectric and optical properties in Er3+-doped Li2O–Ta2O5–SiO2–Al2O3 glasses. Int. J. Appl. Ceram. Technol. 8(5), 1031–1041 (2011)

    Article  Google Scholar 

  21. L.T. He, G.B. Xia, D.A. Yang, Synthesis and characterization of LTCC composites based on the spodumene/anorthite crystallizable glass. J. Alloy. Compd. 556, 12–19 (2013)

    Article  Google Scholar 

  22. J.-J. Shyu, F.-R. Chuang, Densification and phase development of spodumene–cordierite glass powder mixtures. J. Am. Ceram. Soc. 80(12), 3273–3277 (1997)

    Article  Google Scholar 

  23. E.S. Kim, W.J. Yeo, Thermal properties of CaMgSi2O6 glass–ceramics with Al2O3. Ceram. Int. 38, S547–S550 (2012)

    Article  Google Scholar 

  24. G.H. Chen, X.Y. Liu, Fabrication, characterization and sintering of glass–ceramics for low-temperature co-fired ceramic substrates. J Mater Sci Mater Electron. 15(9), 595–600 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjun Qing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qing, Z., Li, B., Li, H. et al. Effects of MgO on properties of Li2O–Al2O3–SiO2 glass–ceramics for LTCC applications. J Mater Sci: Mater Electron 25, 2149–2154 (2014). https://doi.org/10.1007/s10854-014-1852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1852-z

Keywords

Navigation