Skip to main content
Log in

Crystallographic textured evolution in 0.85Na0.5Bi0.5TiO3–0.04BaTiO3–0.11K0.5Bi0.5TiO3 ceramics prepared by reactive-templated grain growth method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.85Na0.5Bi0.5TiO3–0.04BaTiO3–0.11K0.5Bi0.5TiO3 (BNBK) lead-free piezoelectric ceramics with extensive [001]pc (pc: pseudo cubic) texture were fabricated by the reactive-templated grain growth method using anisotropic Bi4Ti3O12 (BIT) particles as templates. The degree of grain orientation increased with increasing heat treatment temperature (600–1,200 °C). The obtained textured ceramics showed dense and brick-wall like microstructure, giving a Lotgering factor of 0.6. A physical understanding of interaction between BIT templates and matrix powders and the mechanism of texture evolution were proposed and confirmed by experimental evidences of X-ray diffraction patterns, scanning electron microscope images and density measurements. The piezoelectric response was enhanced by the grain orientation, and the piezoelectric constant (d33) of the textured ceramics sintered at 1,170 °C attained a value of 254 pC/N, which was 41 % higher than random ceramics (180 pC/N).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)

    Article  Google Scholar 

  2. T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 113–126 (2007)

    Article  Google Scholar 

  3. Z.Y. Shen, Y.M. Li, L. Jiang, R.R. Li, Z.M. Wang, Y. Hong, R.H. Liao, J. Mater. Sci. Mater. Electron. 22, 1071–1075 (2011)

    Article  Google Scholar 

  4. G.Z. Zang, X.J. Yi, J. Du, Z.J. Xu, R.Q. Chu, P. Fu, W. Li, J. Mater. Sci. Mater. Electron. 22, 1282–1285 (2011)

    Article  Google Scholar 

  5. J. Roedel, W. Jo, K.T.P. Seifert, E.M. Anton, J. Am. Ceram. Soc. 92, 1153–1177 (2009)

    Article  Google Scholar 

  6. Y. Saito, H. Takao, J. Korean Phys. Soc. 51, 790–797 (2007)

    Article  Google Scholar 

  7. F. Gao, C.S. Zhang, X.C. Liu, L.H. Cheng, C.S. Tian, J. Eur. Ceram. Soc. 27, 3453–3458 (2007)

    Article  Google Scholar 

  8. F. Gao, X.C. Liu, C.S. Zhang, L.H. Cheng, C.S. Tian, Ceram. Int. 34, 403–408 (2008)

    Article  Google Scholar 

  9. Y.K. Yan, H.P. Zhou, W. Zhao, D. Liu, J. Electroceram. 21, 246–250 (2008)

    Article  Google Scholar 

  10. D. Maurya, A. Pramanick, K. An, S. Priya, Appl. Phys. Lett. 100, 172906 (2012)

    Article  Google Scholar 

  11. H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Jpn. J. Appl. Phys. 42, 7401–7403 (2003)

    Article  Google Scholar 

  12. Y. Makiuchi, R. Aoyagi, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 44, 4350–4353 (2005)

    Article  Google Scholar 

  13. S.J. Zhang, T.R. Shrout, H. Nagata, Y. Hiruma, T. Takenaka, IEEE T. Ultrason. Ferr. 54, 910–917 (2007)

    Article  Google Scholar 

  14. J.F. Trelcat, C. Courtois, M. Rguiti, A. Leriche, P.H. Duvigneaud, T. Segato, Ceram. Int. 38, 2823–2827 (2012)

    Article  Google Scholar 

  15. X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85, 91–93 (2004)

    Article  Google Scholar 

  16. S.T. Zhang, B. Yang, W.W. Cao, Acta Mater. 60, 469–475 (2012)

    Article  Google Scholar 

  17. Y.J. Dai, X.W. Zhang, K.P. Chen, Int. J Appl. Ceram. Tec. 8, 423–429 (2011)

    Article  Google Scholar 

  18. Y.J. Dai, S.J. Zhang, T.R. Shrout, X.W. Zhang, J. Am. Ceram. Soc. 93, 1108–1113 (2010)

    Article  Google Scholar 

  19. T. Sun, Y.J. Dai, H.Q. Wang, Key Eng. Mater. 512–515, 1355–1358 (2012)

    Article  Google Scholar 

  20. D. Maurya, Y. Zhou, Y.K. Yan, S. Priya, J. Mater. Chem. C 1, 2102–2111 (2013)

    Article  Google Scholar 

  21. X.H. Du, J.H. Zheng, U. Belegundu, K. Uchino, Appl. Phys. Lett. 72, 2421–2423 (1998)

    Article  Google Scholar 

  22. F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113–123 (1959)

    Article  Google Scholar 

  23. Y.M. Kan, P.L. Wang, Y.X. Li, Y.B. Cheng, D.S. Yan, J. Eur. Ceram. Soc. 23, 2163–2169 (2003)

    Article  Google Scholar 

  24. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236–2239 (1991)

    Article  Google Scholar 

  25. W.F. Bai, J.G. Hao, F. Fu, W. Li, B. Shen, J.W. Zhai, Mater. Lett. 97, 137–140 (2013)

    Article  Google Scholar 

  26. W. Zhao, J. Ya, Y. Xin, L.E.D. Zhao, H.P. Zhou, J. Am. Ceram. Soc. 92, 1607–1609 (2009)

    Article  Google Scholar 

  27. T. Watanabe, H. Funakubo, M. Osada, Y. Noguchi, M. Miyayama, Appl. Phys. Lett. 80, 100–102 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Natural Science Foundation of China (51208357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, M., Li, X., Zhao, Z. et al. Crystallographic textured evolution in 0.85Na0.5Bi0.5TiO3–0.04BaTiO3–0.11K0.5Bi0.5TiO3 ceramics prepared by reactive-templated grain growth method. J Mater Sci: Mater Electron 25, 1873–1879 (2014). https://doi.org/10.1007/s10854-014-1813-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1813-6

Keywords

Navigation