Skip to main content
Log in

Phase transition, ferroelectric and piezoelectric properties of Bi(Mg0.5Zr0.5)O3-modified BiFeO3–BaTiO3 lead-free ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(0.725 − x)BiFeO3–0.275BaTiO3–xBi(Mg0.5Zr0.5)O3 + 1 mol% MnO2 lead-free ceramics (x = 0–0.08) were synthesized by a conventional solid state reaction method and the effects of Bi(Mg0.5Zr0.5)O3 on phase transition, piezoelectric and ferroelectric properties of the ceramics were investigated. After the addition of Bi(Mg0.5Zr0.5)O3, the crystal structure of the ceramics is transformed from rhombohedral to tetragonal phase and the morphotropic phase boundary (MPB) of rhombohedral and tetragonal phase is formed at x = 0.01. The grain size of the ceramics increases with x increasing from 0 to 0.02 and then decreases with x further increasing. The dielectric peak of the ceramics becomes diffusive with x increasing after the addition of Bi(Mg0.5Zr0.5)O3. The ceramics with x = 0–0.08 exhibit much better electric insulation with the resistivity of 1.0 × 109–5.0 × 109 Ω·cm than pure BiFeO3 ceramic with the resistivity of ~5 × 107 Ω·cm. Due to the formation of the MPB, the ceramics with x = 0–0.02 possess good densification with the relative densities ρ r of 94.9–96.3 %, strong piezoelectricity with the d 33 of 129–135 pC/N and very high Curie temperature with the T C of 559–610 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic, London, 1971)

  2. J. Jiang, S.-G. Hur, S.-G. Yoon, Int. J. Appl. Ceram. Technol. 8, 1393 (2011)

    Article  Google Scholar 

  3. Z.F. Li, Y.X. Li, J.W. Zhai, Curr. Appl. Phys. 11, S2 (2011)

    Google Scholar 

  4. D. Liu, Y.P. Pu, X. Shi, Vacuum 86, 1568 (2012)

    Article  Google Scholar 

  5. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C Solid State Phys. 13, 1931 (1980)

    Article  Google Scholar 

  6. F. Kubel, H. Schmid, Acta Crystallogr. Sect. B Struct. Sci. 46, 698 (1990)

    Article  Google Scholar 

  7. R.K. Mishra, D.K. Pradhan, R.N.P. Chaudhary, A. Banerjee, J. Phys. Condens. Matter 20, 045218 (2008)

    Article  Google Scholar 

  8. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loutts, J. Appl. Phys. 97, 093903 (2005)

    Article  Google Scholar 

  9. M. Valant, A.-K. Axelsson, N. Alford, Chem. Mater. 19, 5431 (2007)

    Article  Google Scholar 

  10. C. Tabares-Munoz, J.P. Rivera, A. Monnier, H. Schmid, Jpn. J. Appl. Phys. 24, 1051 (1985)

    Article  Google Scholar 

  11. J. P-Gonjal, M.E. V-Castrejon, L. Fuentes, E. Moran, Mater. Res. Bull. 44, 1734 (2009)

    Article  Google Scholar 

  12. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.-M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  Google Scholar 

  13. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayan, Appl. Phys. Lett. 76, 2764 (2000)

    Article  Google Scholar 

  14. H. Singh, A. Kumar, K.L. Yadav, Mater. Sci. Eng. B176, 540 (2011)

    Article  Google Scholar 

  15. Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Solid State Sci. 13, 2196 (2011)

    Article  Google Scholar 

  16. C.-S. Tu, R.R. Chien, T.-H. Wang, J. Anthoninappen, Y.-T. Peng, J. Appl. Phys. 113, 17D908 (2013)

    Article  Google Scholar 

  17. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)

    Article  Google Scholar 

  18. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li, J. Eur. Ceram. Soc. 33, 1177 (2013)

    Article  Google Scholar 

  19. M.R. Suchomel, P.K. Davies, J. Appl. Phys. 96, 4405 (2004)

    Article  Google Scholar 

  20. S. Anand, R. Pandey, A.K. Singh, Cond-Mat. Mtrl-Sci. 1311, 3788 (2013)

    Google Scholar 

  21. X.H. Liu, Z. Xu, S.B. Qu, X.Y. Wei, J.L. Chen, Ceram. Int. 34, 797 (2008)

    Article  Google Scholar 

  22. M.I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1968)

    Article  Google Scholar 

  23. X.H. Wang, P.L. Chen, I.W. Chen, J. Am. Ceram. Soc. 89, 431 (2006)

    Article  Google Scholar 

  24. X.M. Chen, X.X. Gong, T.N. Li, Y. He, P. Liu, J. Alloys Compd. 507, 535 (2010)

    Article  Google Scholar 

  25. L. Lutterotti, MAUD, CPD NEWSLETTER, (IUCr) No. 24, Dec 2000

  26. N.A.G.A.T.A. Hajime, J. Ceram. Soc. Jpn. 116, 271 (2008)

    Article  Google Scholar 

  27. R.Z. Zuo, X.S. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007)

    Article  Google Scholar 

  28. Q. Zhou, C.G. Zhou, H.B. Yang, G.H. Chen, W.Z. Li, H. Wang, J. Am. Ceram. Soc. 95, 3889 (2012)

    Article  Google Scholar 

  29. Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 95, 670 (2012)

    Article  Google Scholar 

  30. Y. Hosono, K. Harada, Y. Yamashita, Jpn. J. Appl. Phys. Part 1 40, 5722 (2001)

    Article  Google Scholar 

  31. S.K. Acharya, T.-M. Kim, J.-H. Hyung, B.-G. Ahn, S.-K. Lee, J. Alloys Compd. 586, 549 (2014)

    Article  Google Scholar 

  32. J.G. Chen, H.D. Shi, G.X. Liu, J.R. Cheng, S.X. Dong, J. Alloys Compd. 537, 280 (2012)

    Article  Google Scholar 

  33. C.A. Randall, N. Kim, J.-P. Kucera, W.W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects of Education Department of Sichuan Province (11ZA104), Science and Technology Bureau of Sichuan Province (2010JQ0046) and the Open Project of State Key Laboratory of Electronic Thin Films and Integrated Devices of University of Electronic Science and Technology of China (KFJJ201108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunmin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, L., Jiang, N., Lei, F. et al. Phase transition, ferroelectric and piezoelectric properties of Bi(Mg0.5Zr0.5)O3-modified BiFeO3–BaTiO3 lead-free ceramics. J Mater Sci: Mater Electron 25, 1736–1744 (2014). https://doi.org/10.1007/s10854-014-1792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1792-7

Keywords

Navigation