Skip to main content
Log in

Dielectric and impedance characteristics of KTaO3 modified BiFeO3 multiferroics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline (Bi1−x, Kx) (Fe1−x, Tax) O3 (x = 0.0, 0.1, 0.2, 0.3) materials were synthesized by a mixed-oxide method. The formation of single-phase compound in hexagonal crystal system was confirmed by X-ray diffraction analysis. Through scanning electron microscope the surface texture of the prepared material was recorded. It exhibits a uniform grain distribution with few small voids suggesting the formation of high-density (except BiFeO3) pellet samples. For different concentration (x) of KTaO3 the impedance and dielectric properties of the materials were investigated as a function of temperature and frequency. The grain and grain boundary contributions in the resistive and capacitive components of the samples were estimated using complex impedance spectroscopy technique. A strong correlation between these electrical parameters and microstructures (bulk, grain boundary, nature of charge carriers, etc.) of the material was established. The value of activation energy due to both grain and grain boundary is nearly same, but increases with an increase in composition (x). The nature of variation of direct-current conductivity confirms the Arrhenius-behavior of the materials. Study of frequency dependence of alternating-current conductivity suggests that the material obeys Jonscher’s universal power law, and the presence of ionic conductivity is observed. I–V characteristics curve confirms the NTCR-type behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    Article  Google Scholar 

  2. M. Li et al., J. Phys. D Appl. Phys. 40, 1603–1607 (2007)

    Article  Google Scholar 

  3. S. Dong, J.-F. Li, D. Viehland, Appl. Phys. Lett. 83, 2265 (2003)

    Article  Google Scholar 

  4. S. Dong et al., Appl. Phys. Lett. 89, 243512 (2006)

    Article  Google Scholar 

  5. G.A. Smolenskii, I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982)

    Article  Google Scholar 

  6. P. Fischer et al., J. Phys. C Solid State Phys. 13, 1931 (1980)

    Article  Google Scholar 

  7. I. Sosnowskaa, M. Loewenhaupt, W.I.F. David, R.M. Ibberson, Phys. B 180 & 181, 117–118 (1992)

    Article  Google Scholar 

  8. C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401 (2005)

    Article  Google Scholar 

  9. T. Hashizume, A. Saiki, K. Terayama, Mater. Trans. 51, 261–264 (2010)

    Article  Google Scholar 

  10. E. Wu, POWD: an interactive power diffraction data interpretation and indexing program V2.1. School of Physical Sciences. Flinder University of South Australia. Bedford Park, Australia (1989)

  11. P. Ganguli, S. Devi, A.K. Jha, K.L. Deori, Ferroelectrics 381, 111 (2009)

    Article  Google Scholar 

  12. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)

    Article  Google Scholar 

  13. S. Brahma, R.N.P. Choudhary, A.K. Thakur, Phys. B 355, 188 (2005)

    Article  Google Scholar 

  14. P.S. Das, P.K. Chakraborty, B. Behera, R.N.P. Choudhary, Phys. B 395, 98 (2007)

    Article  Google Scholar 

  15. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. Interfacial Electrochem. 58, 429 (1975)

    Article  Google Scholar 

  16. M.A.L. Nobre, S. Lanfredi, Catal. Today 78, 529 (2003)

    Article  Google Scholar 

  17. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

  18. M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5557 (2003)

    Article  Google Scholar 

  19. A.R. West, D.C. Sinclair, N. Hirose, J. Electroceram. 1, 65 (1997)

    Article  Google Scholar 

  20. J.R. Macdonaled, Solid State Ionics 13, 147 (1984)

    Article  Google Scholar 

  21. O. Raymond, R. Font, N. Suaerz-Almodovar, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 97, 084108 (2005)

    Article  Google Scholar 

  22. J.R. Macdonaled, Impedance Spectroscopy, Emphasizing Solid Materials and Systems (Wiley Interscience, New York, 1987)

    Google Scholar 

  23. J.R. Macdonaled, Solid State Ionics 13, 147 (1984)

    Article  Google Scholar 

  24. M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 98, 084101 (2005)

    Article  Google Scholar 

  25. N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid State Ionics 179, 689 (2008)

    Article  Google Scholar 

  26. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchismita Mohanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanty, S., Choudhary, R.N.P. Dielectric and impedance characteristics of KTaO3 modified BiFeO3 multiferroics. J Mater Sci: Mater Electron 25, 1180–1187 (2014). https://doi.org/10.1007/s10854-014-1706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1706-8

Keywords

Navigation