Skip to main content
Log in

Dielectric and multiferroic properties of 0.75BiFeO3–0.25BaTiO3 solid solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Solid solution 0.75BiFeO3–0.25BaTiO3 (BFO–25 % BT) was prepared by solid state reaction method. Powder X-ray diffraction showed the morphotropic phase boundary (MPB) with the coexistence of both rhombohedral and cubic phases due to splitting in the line at 2θ = 39.7°. Scanning electron micrographs indicated that the ceramic has compact and uniform microstructure with average grain size <3 μm. The polarization vs applied electric field analysis showed an unsaturated hysteresis loop with the remnant polarization 12.95 μC/cm2 at 22 kV/cm for 0.75BiFeO3–0.25BaTiO3 ceramic. The calculations of diffuse parameter i.e. slope γ = 1.63 suggested a high degree of diffusion in BFO–BT lattice. The room temperature magnetic measurements confirmed the weak ferromagnetism of magnetization ~0.1 emu/gm at an applied magnetic field of H = 5 kOe for 0.75BiFeO3–0.25BaTiO3 ceramic. The high temperature magnetic and dielectric analysis suggested a coupling between ferroelectric and magnetic parameters near the antiferromagnetic–paramagnetic transition Tc ~ 310 °C, which was responsible for the broad frequency dependent dielectric maxima. The impedance spectroscopy and complex modulus analysis confirmed the conventional relaxor, NTCR (negative temperature coefficient of resistance), giant ferroelectricity and polydispersive non-Debye type dielectric relaxation behaviour for 0.75BiFeO3–0.25BaTiO3 ceramic at 170 °C on 1 kHz with activation energy 2.33 eV. The modulus analysis also confirmed the possibility of hopping mechanism for electrical transport process in material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Chang, H.M. Jang, S.K. Kim, J Magn 11, 108 (2006)

    Article  Google Scholar 

  2. S.V. Kiselev, R.P. Ozarov, G.S. Zhdanov, Sov Phys Dokl 7, 742 (1962)

    Google Scholar 

  3. P. Fishetr, M. Polomska, S. Sosnowska, M. Szymanski, J Phys C 13, 1931 (1980)

    Article  Google Scholar 

  4. F. Kubel, H. Schmid, Acta Crystallog Sect B 46, 698 (1990)

    Article  Google Scholar 

  5. Y. Yang, V.G.M. Annamdas, C. Wang, Y. Zhou, Sensors 8, 271 (2008)

    Article  Google Scholar 

  6. M. Kumar, S. Shankar, O.M. Parkash, J Alloys Compd 577, 222 (2013)

    Article  Google Scholar 

  7. V.R. Palkar, J. John, Appl Phys Lett 80, 1628 (2002)

    Article  Google Scholar 

  8. J.R. Cheng, N. Li, L.E. Cross, J Appl Phys 94, 5153 (2003)

    Article  Google Scholar 

  9. S.T. Zhang, M.H. Lu, D. Wu, Y.F. Chen, N.B. Ming, Appl Phys Lett 87, 1 (2005)

    Article  Google Scholar 

  10. W. Eerenstein, F.D. Morrrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Science 307, 1203a (2005)

    Article  Google Scholar 

  11. Hunpratub S, Thongbai P (2006) Appl Phys Lett 94: 062904-1-3

  12. Lin YH, Li M, Nan CW, Li J, Wu J, He J (2006) Appl Phys Lett 89: 032907-1-3

  13. S. Chandarak, A. Ngamjarurojana, Ferroelectrics 410, 75 (2011)

    Article  Google Scholar 

  14. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J Appl Phys 87, 855 (2000)

    Article  Google Scholar 

  15. S. Chandarak, M. Unruan, J Magn 14(3), 120 (2009)

    Article  Google Scholar 

  16. M. Mahesh Kumar, A. Srinivas, S.V. Suryanarayana, J Appl Phys 87, 855 (2000)

    Article  Google Scholar 

  17. Wang TH, Ding Y, Tu CS, Yao, Wu KT, Lin TC, Yu HH, Ku CS, Lee HY (2011) J Appl Phys 109:07D907

  18. G. Catalan, F. Scott, Adv Mater 21, 2463 (2009)

    Article  Google Scholar 

  19. A. Bokov, Z. Ye, J Mat Sci 41, 31 (2006)

    Article  Google Scholar 

  20. T.H. Wang et al., J Appl Phys 109, 044101 (2011)

    Article  Google Scholar 

  21. B. Behera, P. Nayak, R.N.P. Choudhary, J Alloys Compd 436, 226 (2007)

    Article  Google Scholar 

  22. B. Behera, P. Nayak, R.N.P. Choudhary, Mat Res Bull 43, 401 (2008)

    Article  Google Scholar 

  23. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  24. C.K. Suman, K. Prasad, R.N.P. Choudhary, J Mater Sci 41, 369 (2007)

    Article  Google Scholar 

  25. S. Sen, R.N.P. Choudhary, P. Pramanik, Phys B 387, 56 (2007)

    Article  Google Scholar 

  26. R.C. Buchanan, Principles of electronic ceramics (Marcel Dekkar, New York, 1991), p. 250

    Google Scholar 

  27. V. Shrivastava, A.K. Jha, R.G. Mendiratta, Phys B 371, 337 (2006)

    Article  Google Scholar 

  28. B. Behera, P. Nayak, R.N.P. Choudhary, J Alloys Compd 436, 226 (2007)

    Article  Google Scholar 

  29. R. Waser, R. Hagenbeck, Acta Mater 48, 797 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (M. K.) acknowledges and support from MHRD, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Shankar, S., Parkash, O. et al. Dielectric and multiferroic properties of 0.75BiFeO3–0.25BaTiO3 solid solution. J Mater Sci: Mater Electron 25, 888–896 (2014). https://doi.org/10.1007/s10854-013-1661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1661-9

Keywords

Navigation