Skip to main content
Log in

Strong room temperature ferromagnetism in chemically precipitated ZnO:Co2+:Bi3+ nanocrystals for DMS applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Well crystalline Co-Bi co-doped ZnO nanostructures with various concentration of Bi were synthesized by simple chemical precipitation technique using metal nitrate precursors. The structural and magnetic properties of the samples calcined at 300 °C for 6 h has been studied comprehensively. X-ray diffraction patterns of the pure and Co-with Bi doped samples have shown the well crystalline diffraction peaks corresponds to the characteristic wurtzite ZnO crystal structure. Aggregated nano particles have emerged with flower like morphology and it can be seen from the scanning electron microscopy and transmission electron microscopy. The average particle diameter was estimated and found to be 25–35 nm. Tunable optical band gap related to an additional electron state created by dopant was observed from the UV–Visible spectra. Typical PL emission in the UV, visible and continuous deep level emission further demonstrates that the potential application of the material in optoelectronics. Excellent ferromagnetic features of the material at room temperature reveal the additional carrier induced exchange interaction could enhance the ferromagnetism in co-doped ZnO nanostructure. The addition of Bi at 3+ states can act as donor within the semiconductor which provides the additional electron charge carrier that could involve directly to the exchange interaction effectively at certain limit and enhances the ferromagnetism. At higher doping concentration the formation of diamagnetic Bi2O3 secondary phase have contributed to change the ferromagnetic behaviour of the sample. From this study it is suggested that this kind of combined ferromagnetism and excellent optical tunability of the Bi co-doped ZnO:Co system will be the potential material for future magneto-opto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.-W. Zhang, P.-J. Wang, F. Li, Solid State Sci 13, 1608–1611 (2011)

    Article  CAS  Google Scholar 

  2. D.L. Hou, X.J. Ye, H.J. Meng, H.J. Zhou, X.L. Li, Appl Phys Lett 90, 142502 (2007)

    Article  Google Scholar 

  3. M.S. Gabor, T. Petrisor Jr., C. Tiusan, M. Hehn, B.N. Vasile, J Appl Phys 111, 083917 (2012)

    Article  Google Scholar 

  4. L.W. Yang, X.L. Wu, T. Qiu, G.G. Siu, P.K. Chu, J Appl Phys 99, 074303 (2006)

    Article  Google Scholar 

  5. Z. ShaoMin, Y. HongLei, L. LiSheng, C. XiLiang, L. ShiYun, H. YaoMing, Y. RuiJian, L. Ning, Nanoscale Res Lett 5, 1284–1288 (2010)

    Article  Google Scholar 

  6. S. Zhuang, X. Xiaoyong, Y. Pang, H. Li, Yu. Bin, H. Jingguo, J Magn Magn Mater 327, 24–27 (2013)

    Article  CAS  Google Scholar 

  7. X. Yongbin, Y. Tang, C. Li, G. Cao, W. Ren, X. Hui, Z. Ren, J Alloys Compd 481, 837–840 (2009)

    Article  Google Scholar 

  8. S. Yin, M.X. Xu, L. Yang, J.F. Liu, H. Rösner, H. Hahn, H. Gleiter, D. Schild, S. Doyle, T. Liu, T.D. Hu, E. Takayama-Muromachi, J.Z. Jiang, Phys Rev B 73, 224408 (2006)

    Article  Google Scholar 

  9. S. Kumar, R. Kumar, D.P. Singh, Appl Surf Sci 255, 8014–8018 (2009)

    Article  CAS  Google Scholar 

  10. X. Qingyu, Z. Wen, X. Liguo, J. Gao, W. Di, K. Shen, T. Qiu, S. Tang, X. Mingxiang, Phys B 406, 19–23 (2011)

    Article  Google Scholar 

  11. J. Hays, K.M. Reddy, N.Y. Graces, M.H. Engelhard, V. Shutthanandan, M. Luo, C. Xu, N.C. Giles, C. Wang, S. Thevuthasan, A. Punnoose, J Phys Condens Matter 19, 266203 (2007)

    Article  CAS  Google Scholar 

  12. N. Rajkumar, K. Ramachandran, IEEE Trans Nanotechnol 10(3), 513–519 (2011)

    Article  Google Scholar 

  13. W. Ping, B. Zhou, W. Zhou, Appl Phys Lett 100, 182405 (2012)

    Article  Google Scholar 

  14. B. Pal, P.K. Giri, J Appl Phys 108, 084322 (2010)

    Article  Google Scholar 

  15. B. Pal, P.K. Giri, Int J Nanosci 10(1), 1–5 (2010)

    Google Scholar 

  16. K. Ip, R.M. Frazier, Y.W. Heo, D.P. Norton, C.R. Abernathy, S.J. Pearton, J. Kelly, R. Rairigh, A.F. Hebard, J.M. Zavada, R.G. Wilson, J Vac Sci Technol B 21(4), 1476–1481 (2003)

    CAS  Google Scholar 

  17. Y. Wang, Y. Song, S. Yin, Yu. Gongqi, J. Miao, S. Yuan, Mater Sci Eng B 131, 9–12 (2006)

    Article  CAS  Google Scholar 

  18. T. Zhu, W.S. Zhan, W.G. Wang, J.Q. Xiao, Appl Phys Lett 89, 022508 (2006)

    Article  Google Scholar 

  19. J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Y.M. Kim, Appl Phys Lett 84(8), 1338–1340 (2004)

    Article  CAS  Google Scholar 

  20. L.I. B-B, S.H.E.N. Hong-Lie, Z. Rong, X.I.U. Xiang-Qiang, X. Zhi, Chin Phys Lett 24, 3473 (2007)

    Article  Google Scholar 

  21. J.H. Yang, Y. Cheng, Y. Liu, X. Ding, Y.X. Wang, Y.J. Zhang, H.L. Liu, Solid State Commun 149, 1164–1167 (2009)

    Article  CAS  Google Scholar 

  22. M. Snure, D. Kumar, A. Tiwari, Appl Phys Lett 94, 012510 (2009)

    Article  Google Scholar 

  23. A.K. Mishra, D. Das, Mater Sci Eng B 171, 5–10 (2010)

    Article  CAS  Google Scholar 

  24. G.Y. Ahn, S.-I. Park, S.J. Kim, C.S. Kim, J Magn Magn Mater 304, e498–e500 (2006)

    Article  CAS  Google Scholar 

  25. L.M. Wang, J.-W. Liao, Z.-A. Peng, J.-H. Lai, J Electrochem Soc 156(2), H138–H142 (2009)

    Article  CAS  Google Scholar 

  26. M. Ferhat, A. Zaoui, R. Ahuja, Appl Phys Lett 94, 142502 (2009)

    Article  Google Scholar 

  27. I. Bantounas, S. Goumri-Said, M.B. Kanoun, A. Manchon, I. Roqan, J Appl Phys 109, 083929 (2011)

    Article  Google Scholar 

  28. A.A. Dakhel, M. El-Hilo, J Appl Phys 107, 123905 (2010)

    Article  Google Scholar 

  29. M. Subramanian, P. Thakur, M. Tanemura, T. Hihara, V. Ganesan, J Appl Phys 108, 053904 (2010)

    Article  Google Scholar 

  30. J. Iqbal, X. Liu, H. Zhu, C. Pan, Y. Zhang, J Appl Phys 106, 083515 (2009)

    Article  Google Scholar 

  31. M.H.N. Assadi, Y.B. Zhang, P. Photongkam, S. Li, J Appl Phys 109, 013909 (2011)

    Article  Google Scholar 

  32. P. Photongkam, Y.B. Zhang, M.H.N. Assadi, S. Li, D. Yu, J Appl Phys 107, 033909 (2010)

    Article  Google Scholar 

  33. G. Tang, X. Shi, C. Huo, Z. Wang, Ceram Int 11, 073 (2012)

    Google Scholar 

  34. C. Xu, J. Chun, D. Kim, B. Chon, T. Joo Citation, Appl Phys Lett 91, 153104 (2007)

    Article  Google Scholar 

  35. H. Gu, Y. Jiang, Y. Xu, M. Yan, Appl Phys Lett 98, 012502 (2011)

    Article  Google Scholar 

  36. O.D. Jayakumar, I.K. Gopalakrishnan, K. Shashikala, S.K. Kulshreshtha, C. Sudakar Appl, Phys Lett 89, 202507 (2006)

    Google Scholar 

  37. G.S. Chang, E.Z. Kurmaev, D.W. Boukhvalov, L.D. Finkelstein, A. Moewes, H. Bieber, S. Colis, A. Dinia, J Phys Condens Matter 21, 056002 (2009)

    Article  CAS  Google Scholar 

  38. A. Gulino, I. Fragala, Chem Mater 14, 116–121 (2002)

    Article  CAS  Google Scholar 

  39. F.X. Xiu, L.J. Mandalapu, Z. Yang, J.L. Liu, G.F. Liu et al., Appl Phys Lett 89, 052103 (2006)

    Article  Google Scholar 

  40. B. Karthikeyan, C.S. Suchand Sandeep, R. Philip, M.L. Baesso, J Appl Phys 106, 114304 (2009)

    Article  Google Scholar 

  41. J. Hou, Z. Wang, S. Jiao, H. Zhu, Cryst Eng Comm 14, 5923–5928 (2012)

    Article  CAS  Google Scholar 

  42. C. Jin, H. Kim, K. Baek, H.W. Kim, C. Lee, J Korean Phys Soc 57(6), 1634–1638 (2010)

    CAS  Google Scholar 

  43. B. Ling, X.W. Sun, J.L. Zhao, Y.Q. Shen, Z.L. Dong, L.D. Sun, S.F. Li, S. Zhang, J Nanosci Nanotechnol 10, 8322–8327 (2010)

    Article  CAS  Google Scholar 

  44. H. Bando, K. Koizumi, K. Daikohara, Y. Oikawa, V.A. Kulbachinskii, H. Ozaki, in Proceedings of the 18th International Conference on Thermoelectrics (IEEE, Baltimore, MD, 1999), pp. 359–362

  45. L.I. B-B, S.H.E.N. Hong-Lie, Z. Rong, X.I.U. Xiang-Qiang, X. Zhi, Chin Phys Lett 24, 123473 (2007)

    Google Scholar 

  46. S. Lee, Y.C. Cho, S.J. Kim, C.R. Cho, S.Y. Jeong, S.J. Kim, J.P. Kim, Y.N. Choi, J.M. Sun, Appl Phys Lett 94, 212507 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Priya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thangeeswari, T., Velmurugan, J. & Priya, M. Strong room temperature ferromagnetism in chemically precipitated ZnO:Co2+:Bi3+ nanocrystals for DMS applications. J Mater Sci: Mater Electron 24, 4817–4826 (2013). https://doi.org/10.1007/s10854-013-1481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1481-y

Keywords

Navigation