Skip to main content
Log in

PVD grown SnS thin films onto different substrate surfaces

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recent interests focus on tin mono sulphide as a potential candidate for an absorber layer in heterojunction solar cells. In the present investigation, SnS thin films have been deposited onto different substrates such as glass, ITO and Mo-coated glass substrate by thermal evaporation method. The compositional, microstructural and photoelectrochemical properties of the SnS films were analyzed depending upon the chemical nature of the substrates used. The SnS layers were polycrystalline with Herzbergite orthorhombic structure on all three substrates and had nearly stoichiometric elemental composition with a Sn/S ratio of ~1.01. The films grown on ITO and Mo-coated glass substrates exhibit (040) as preferred orientation whereas the films deposited on glass showed (111) plane as predominant. The layers were densely packed and well adherent to the substrate surface. The Raman spectra showed bands at 64, 163, 189 and 219 cm−1, which corresponds to the single phase (SnS) composition of films. p-type conductivity of all the deposited films were determined by the photoresponse studies. The highest photoresponse for the films on the ITO substrate indicates their appropriateness for the solar cell application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Mathew, J.P. Enriquez, A. Romeo, A.N. Tiwari, Sol. Energy 77, 831 (2004)

    Article  CAS  Google Scholar 

  2. G. Gordillo, C. Calderon, Sol. Energy Mater. Sol. Cells 77, 163 (2003)

    Article  CAS  Google Scholar 

  3. C.Y. Su, W.H. Ho, H.C. Lin, C.Y. Nieh, S.C. Liang, Sol. Energy Mater. Sol. Cells 95, 261 (2011)

    Article  CAS  Google Scholar 

  4. M. Gunasekaran, M. Ichimurra, Sol. Energy Mater. Sol. Cells 91, 774 (2007)

    Article  CAS  Google Scholar 

  5. D. Avellaneda, G. Delgado, M.T.S. Nair, P.K. Nair, Thin Solid Films 515, 5771 (2007)

    Article  CAS  Google Scholar 

  6. B. Gosh, R. Bhattacharjee, P. Banerjee, S. Das, Appl. Surf. Sci. 257, 3670 (2011)

    Article  Google Scholar 

  7. K.T.R. Reddy, N.K. Reddy, R.W. Miles, Sol. Energy Mater. Sol. Cells 90, 3041 (2006)

    Article  Google Scholar 

  8. R.W. Miles, O.E. Ogah, G. Zoppi, I. Frobes, Thin Solid Films 517, 4702 (2009)

    Article  CAS  Google Scholar 

  9. S.A. Bashkirov, V.V. Lazenka, V.F. Gremenok, K. Bente, J. Adv. Microsc. Res. 6, 153 (2011)

    Article  CAS  Google Scholar 

  10. H. Nozaki, M. Onoda, M. Sekita, K. Kosuda, T. Wada, J. Solid State Chem. 178, 245 (2005)

    Article  CAS  Google Scholar 

  11. M. Devika, N. Koteeswara Reddy, M. Prashantha, S. Venkatramana Reddy, Y.B. Hahn, K.R. Gunasekhar, Phys. Status Solidi A 207, 1864 (2010)

    Article  CAS  Google Scholar 

  12. P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Adv. Energy Mater. 1, 1116 (2011)

    Article  CAS  Google Scholar 

  13. B.E. Warren, X-ray diffraction (Dover, New York, 1990), p. 253

    Google Scholar 

  14. M. Devika, N. Koteeswara Reddy, D. Sreekantha Reddy, S. Venkatramana Reddy, K. Ramesh, E.S.R. Gopal, K.R. Gunasekhar, V. Ganesan, Y.B. Hahn, J. Phys. Conden. Mater 19, 306003 (2007)

    Article  Google Scholar 

  15. K. Santhosh Kumar, C. Manoharan, L. Amalraj, S. Dhanapandian, G. Kiruthigaa, K. Vijayakumar, Cryst. Res. Technol. 47, 771 (2012)

    Article  Google Scholar 

  16. N. Koteeswara Reddy, K. Ramesh, R. Ganesan, K.T. Ramakrishna Reddy, K.R. Gunasekhar, E.S.R. Gopal, Appl. Phys. A 83, 133 (2006)

    Article  CAS  Google Scholar 

  17. W. Wang, K.K. Leung, W.K. Fong, S.F. Wang, Y.Y. Hui, S.P. Lau, Z. Chen, L.J. Shi, C.B. Cao, C. Surya, J. Appl. Phys. 111, 093520 (2012)

    Article  Google Scholar 

  18. X.L. Gou, J. Chen, P.W. Shen, Mater. Chem. Phys. 93, 557 (2005)

    Article  CAS  Google Scholar 

  19. Y. Liu, D. Hou, G. Wqng, Chem. Phys. Lett. 379, 67 (2003)

    Article  CAS  Google Scholar 

  20. H.R. Chandrasekhar, R.G. Humphreys, U. Zwick, M. Cardona, Phys. Rev. B 15, 2177 (1977)

    Article  CAS  Google Scholar 

  21. S. Aksay, T. Ozer, M. Zor, Eur. Phys. J. Appl. Phys. 47, 30502 (2009)

    Article  Google Scholar 

  22. N. Sato, M. Ichimura, E. Aria, Y. Yamazaki, Sol. Energy Mater. Sol. Cells 85, 153 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Estonian Centre of Excellence in Research Project TK117T “High-technology Materials for Sustainable Development”, Estonian Energy Technology Program (Project AR 10128), Estonian Ministry of Education and Research (targeted Project T099) and Estonian Science Foundation (MJD213, G8147) are acknowledged for the financing of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Revathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revathi, N., Bereznev, S., Iljina, J. et al. PVD grown SnS thin films onto different substrate surfaces. J Mater Sci: Mater Electron 24, 4739–4744 (2013). https://doi.org/10.1007/s10854-013-1468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1468-8

Keywords

Navigation