Skip to main content
Log in

Structural, ferroelectric and piezoelectric properties of Mn-modified BiFeO3–BaTiO3 high-temperature ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mn modified BiFeO3–BaTiO3 (abbreviated as BFBT-Mnx%, x = 0.1, 0.3, 0.6, 0.9, 1.2) high-temperature lead-free ceramics were prepared by conventional oxide-mixed method and the effect of Mn doping on microstructure and electrical properties was investigated. The solid solutions show a single phase perovskite structure, and the content of Mn has a significant effect on the microstructure of ceramics. The addition of Mn can induce combinatory “hard” and “soft” piezoelectric characteristics due to aliovalent substitutions. In particular, x = 0.6 BFBT-Mnx% ceramic, with a Curie temperature, T c, of ~463 °C, shows optimum piezoelectric properties of d 33 = 131pC/N, k p = 0.298. The simultaneous existence of good piezoelectric properties and high T c makes these ceramics suitable for elevated temperature piezoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Chen, J. Zhu, D. Xiao, B. Qin, Y. Jiang, Mater. Lett. 62, 3567 (2008)

    Article  CAS  Google Scholar 

  2. F. Gao, R. Hong, J. Liu, Z. Li, L. Cheng, C. Tian, J. Alloy. Compd. 475, 619 (2009)

    Article  Google Scholar 

  3. F. Gao, R. Hong, J. Liu, J. Eur. Ceram. Soc. 29, 1687 (2009)

    Article  Google Scholar 

  4. S. Chen, X.L. Dong, C.L. Mao, F. Cao, J. Am. Ceram. Soc. 89, 3270 (2006)

    Article  CAS  Google Scholar 

  5. Ferroperm full catalogue. http://www.ferroperm-piezo.com

  6. C.J. Stringer, T.R. Shrout, C.A. Randall, I.M. Reaney, J. Appl. Phys. 99, 024106 (2006)

    Article  Google Scholar 

  7. R.E. Eitel, C.A. Randall, T.R. Shrout, S.E. Park, Jpn. J. Appl. Phys. 41, 2099 (2002)

    Article  CAS  Google Scholar 

  8. S. Bhattacharjee, S. Tripathi, D. Pandey, Appl. Phys. Lett. 91, 042903 (2007)

    Article  Google Scholar 

  9. J. Chen, H. Shi, G. Liu, J. Cheng, S. Dong, J. Alloy. Compd. 537, 280 (2012)

    Article  CAS  Google Scholar 

  10. T. Sebastian, I. Sterianou, I.M. Reaney, T. Leist, W. Jo, J. Rödel, J. Electroceram. 28, 95 (2012)

    Article  CAS  Google Scholar 

  11. I. Fujii, K. Nakashima, N. Kumada, S. Wada, J. Ceram. Soc. Jpn. 120, 30 (2012)

    Article  CAS  Google Scholar 

  12. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)

    Article  CAS  Google Scholar 

  13. S.O. Leontsev, R.E. Eitel, J. Mater. Res. 26, 9 (2011)

    Article  CAS  Google Scholar 

  14. C. Zhou, A. Feteira, X. Shan, H. Yang, Q. Zhou, G. Chen, Appl. Phys. Lett. 101, 032901 (2012)

    Article  Google Scholar 

  15. Z. Yao, H. Liu, M. Cao, H. Hao, Z. Yu, Mater. Res. Bull. 46, 1257 (2011)

    Article  CAS  Google Scholar 

  16. S.J. Zhang, R.E. Eitel, C.A. Randall, T.R. Shrout, E.F. Alberta, Appl. Phys. Lett. 86, 262904 (2005)

    Article  Google Scholar 

  17. A.P. Barranco, F.C. Pinar, P. Martinez, E.T. Garcia, J. Eur. Ceram. Soc. 21, 523 (2001)

    Article  CAS  Google Scholar 

  18. D. Szwagierczak, J. Kulawik, J. Eur. Ceram. Soc. 25, 1657 (2005)

    Article  CAS  Google Scholar 

  19. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, H. Wang, Mater. Res. Bull. 47, 4233 (2012)

    Article  CAS  Google Scholar 

  20. H.Y. Park, C.H. Nam, I.T. Seo, J.H. Choi, S. Nahm, H.G. Lee, K.J. Kim, S.M. Jeong, J. Am. Ceram. Soc. 93, 2537 (2010)

    Article  CAS  Google Scholar 

  21. Y. Yan, K.H. Cho, S. Priya, J. Am. Ceram. Soc. 94, 3953 (2011)

    Article  CAS  Google Scholar 

  22. Y. Yan, A. Kumar, M. Correa, K.H. Cho, R. S. Katiyar, S. Priya. Appl. Phys. Lett. 100, 152902 (2012)

    Article  Google Scholar 

  23. http://abulafia.mt.ic.ac.uk/shannon/ptable.php

  24. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Article  CAS  Google Scholar 

  25. Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys. 75, 454 (1994)

    Article  CAS  Google Scholar 

  26. B. Jaffe, W.R. Cook, H (Academic Press, London, Jaffe, 1971)

    Google Scholar 

  27. Y.J. Lee, J.S. Kim, S.H. Han, H.W. Kang, H.G. Lee, C. II. Cheon. J. Korean Phys. Soc. 61, 947 (2012)

    Article  CAS  Google Scholar 

  28. I. Fujii, R. Mitsui, K. Nakashima, N. Kumada, M. Shimada, T. Watanabe, J. Hayashi, H. Yabuta, M. Kubota, T. Fukui, S. Wada, Jpn. J. Appl. Phys. 50, 09ND07 (2011)

    Article  Google Scholar 

  29. S. Wada, K. Yamato, P. Pulpan, N. Kumada, B.Y. Lee, T. Iijima, C. Moriyoshi, Y. Kuroiwa, J. Appl. Phys. 108, 094114 (2010)

    Article  Google Scholar 

  30. C.C. Huang, D.P. Cann, J. Appl. Phys. 104, 024117 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (61261012) Guangxi Nature Science Foundation (2010GXNSFD013007 and 2010GXNSFB013010) and Guangxi Education Department Foundation (201012MS083) and Guangxi Key Laboratory of Information Materials (1110908-09-Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changrong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cen, Z., Zhou, C., Yang, H. et al. Structural, ferroelectric and piezoelectric properties of Mn-modified BiFeO3–BaTiO3 high-temperature ceramics. J Mater Sci: Mater Electron 24, 3952–3957 (2013). https://doi.org/10.1007/s10854-013-1346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1346-4

Keywords

Navigation