Skip to main content
Log in

Enhanced electrooptical active materials based on n-hexyl group flexible isolation in NLO chromophores

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two principally novel organic nonlinear optical chromophores (1 and 2) with flexible (n-hexyl group) or rigid isolated (benzyl group) group are designed and successfully synthesized. The prepared chromophores were characterized by MS, 1H-NMR and UV–Vis spectra. Their thermal stability was studied by thermal gravimetric analyzer and differential scanning calorimetry. Poled films of the chromophores doped in amorphous polycarbonate afford the maximum electro-optic tensor coefficient (r33) equal to 39 pm/V, 63 pm/V for chromophore 1 and chromophore 2, respectively at the wavelength 1,064 nm. The reason of so large differences between these two chromophores’ linear electrooptics coefficients were explained within a framework of performed quantum chemical calculations and it is crucially dependent on distances between the chromophore molecules and the polymer chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J.-H. Kim, L. Sun, C.-H. Jang et al., SPIE, San Jose, CA, USA, 2001, pp. 37–44

  2. J. Liu, H. Huang, X. Liu, Z. Zhen, Polym. Adv. Technol. 23, 866–869 (2012)

    Article  CAS  Google Scholar 

  3. M. Cho, D. Choi, P. Sullivan, A. Akelaitis, L.R. Dalton, Prog. Polym. Sci. 33, 1013–1058 (2008)

    Article  CAS  Google Scholar 

  4. H.E.K. Mark Lee, C. Erben, D. Gill et al., Science 298, 1401–1403 (2002)

    Article  Google Scholar 

  5. C. Shi, H. Zhang, J. Bechtel et al., Science 288, 119–122 (2000)

    Article  CAS  Google Scholar 

  6. H. Fetterman, A. Udupa, D. Bhattachaya, H. Erlig et al., Terahertz Electronic Proceedings (1998), pp. 102–105

  7. L.R. Dalton, P.A. Sullivan, D.H. Bale, Chem. Rev. 110, 25–55 (2010)

    Article  CAS  Google Scholar 

  8. P.A. Sullivan, L.R. Dalton, Acc. Chem. Res. 43, 10–18 (2010)

    Article  CAS  Google Scholar 

  9. J. Luo, H. Ma, M. Haller et al., Chemical Communications (2002), pp. 888–889

  10. L. Wang, J. Liu, S. Bo, Mater. Lett. 80, 84–86 (2012)

    Article  CAS  Google Scholar 

  11. J. Wu, J. Liu, T. Zhou et al., Rsc Adv. 2, 1416–1423 (2012)

    Article  CAS  Google Scholar 

  12. R.D. Nielsen, H.L. Rommel, B.H. Robinson, J. Phys. Chem. B 108, 8659–8667 (2004)

    Article  CAS  Google Scholar 

  13. M. Faccini, M. Balakrishnan, M.B.J. Diemeer et al., J. Mater. Chem. 18, 2141–2149 (2008)

    Article  CAS  Google Scholar 

  14. J. Liu, X. Liu, Z. Zhen, J. Incl. Phenom. Macrocycl. Chem. 68, 253–260 (2010)

    Article  CAS  Google Scholar 

  15. G. Ye, D.R. Wang, Y.N. He, X.G. Wang, J. Mater. Chem. 20, 10680–10687 (2010)

    Article  CAS  Google Scholar 

  16. J.L. Liu, W.J. Hou, S.W. Feng et al., J. Phys. Org. Chem. 24, 439–444 (2011)

    Article  CAS  Google Scholar 

  17. J. Kulhanek, F. Bures, A. Wojciechowski et al., J. Phys. Chem. A 114, 9440 (2010)

    Article  CAS  Google Scholar 

  18. M. Makowska-Janusik, I.V. Kityk, J. Kulhanek, F. Bures, J. Phys. Chem. 115, 12251–12258 (2011)

    Article  CAS  Google Scholar 

  19. F. Bures, H. Cermakova, J. Kulhanek et al., Eur. J. Org. Chem. 2012, 529–538 (2012)

  20. M. Czerwinski, J. Bieleninik, J. Napieralski et al., Eur. Polym. J. 33(9), 1441–1447 (1997)

    Article  CAS  Google Scholar 

  21. J. Kulhanek, F. Bures, W. Kuznik et al., Asian J. Chem. (2013). doi:10.1002/asia.201200963

  22. E. Koścień, J. Sanetra, E. Gondek et al., Opt. Commun. 242, 401–409 (2004)

    Article  Google Scholar 

  23. E. Koścień, J. Sanetra, E. Gondek et al., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 61(8), 1933–1938 (2005)

    Google Scholar 

  24. I. Fuks-Janczarek, I.V. Kityk, R. Miedzinski et al., J. Mater. Sci. Mater. Electron. 18, 519–526 (2007)

    Article  CAS  Google Scholar 

  25. I. Fuks-Janczarek, R. Miedzinski, E. Gondek et al., J. Mater. Sci. Mater. Electron. 19, 434–441 (2008)

    Article  CAS  Google Scholar 

  26. R. Miedzinski, J. Ebothe, I. Fuks-Janczarek et al., J. Mater. Sci. Mater. Electron. 21, 659–665 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Directional Program of the Chinese Academy of Sciences (KJCX2.YW.H02) and Innovation Fund of the Chinese Academy of Sciences (CXJJ-11-M035) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Franiv, A.V., Liu, X. et al. Enhanced electrooptical active materials based on n-hexyl group flexible isolation in NLO chromophores. J Mater Sci: Mater Electron 24, 2701–2705 (2013). https://doi.org/10.1007/s10854-013-1158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1158-6

Keywords

Navigation